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Assumption

Let us assume that the random variable  depends only on  and, possibly, on its past valuesY t
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Time series decomposition



Trend, seasonality and noise  
It is possible to decompose the time series in three components:  

• The trend part  corresponds to the long-term evolution of the series 

 polynomial  

logarithmic  , etc. 

• The seasonal part  corresponds to periodic phenomena:  

This is not restrictive since two or more periodic phenomenas of periods  can be 

gathered in a single on of period smallest common multiple of  

• The noise part  whose expectation is zero and which is the only random part of the series; 

generally (or ideally) it is assumed to be strictly stationary 

This decomposition can be  

• additive:  

• multiplicative:  

• combination of the two:  , e.g. 

Tt = f(t)
f(t) = aktk + …a1t + a0

f(t) = log t
St ∃ τ ∈ ℕ⋆ | ∀t ∈ ℕ⋆, St+τ = St

τ1, τ2, …
τ = τ1, τ2, …

εt

Yt = Tt + St + εt

Yt = Tt × St × εt

Yt = Tt + St × εt



Stationarity 

The weak-sense stationarity of  only requires that its first moment (i.e. its expectation) and auto-

covariances do not vary with respect to time and that the second moment is finite for all times: 

$ and  such that:  

 

 

 

( εt )t

∃ μ ∈ ℝ γ : ℕ⋆ → ℝ
∀ t ∈ ℕ⋆, 𝔼[εt] = μ
∀ t ∈ ℕ⋆, ∀ h ∈ ℕ, Cov(εt, εt+h) = 𝔼[(εt − μ)(εt+h − μ)] = γ(h)
∀ t ∈ ℕ⋆, 𝔼[ |εt |

2 ] < + ∞

Definition 
The time series  is strictly stationary if, for all , the joint distribution of 

 does not depend on 

( εt )t k ∈ ℕ
( εt, …, εt+k ) t



Examples 



Examples 

Gaussian white noise εt
i.i.d∼ 𝒩(0,1)

Auto-regressive process of order  
 

1
Zt = 0.95 × Zt−1 + εt

Yt = log t + εt

Xt ∼ 𝒩(0, cos
t

100 )



Examples 

 
stationary

εt
i.i.d∼ 𝒩(0,1)

 
stationary

Zt = 0.95 × Zt−1 + εt
 

non-stationary: 
Yt = log t + εt

𝔼[Yt] = log t

 

non-stationary: 

Xt ∼ 𝒩(0, cos
t

100 )
𝔼[ X2

t ] = cos2 t
100



Week-sense stationarity of an AR(1)
Auto-regressive process of order  and parameter  and  a Gaussian white noise: 

   

•  Constant expectation: 

 

•  Constant auto-covariance: 

 

As   if  and 0 otherwise and ,  

1 |ϕ | < 1 εt
i.i.d∼ 𝒩(0,σ2)

Zt = εt + ϕZt−1 = εt + ϕεt−1 + ϕ2Zt−2 = … =
∞

∑
i=0

ϕiεt−i

∀ t ∈ ℕ⋆, 𝔼[Zt] =
∞

∑
i=0

ϕi𝔼[εt−i] = 0

∀ t ∈ ℕ⋆, ∀ h ∈ ℕ, Cov(Zt, Zt+h) = 𝔼[(
∞

∑
i=0

ϕiεt−i)(
∞

∑
j=0

ϕ jεt+h−j)] =
∞

∑
i=0

∞

∑
j=0

ϕi+j𝔼[εt−i εt+h−j]

𝔼[εt−i εt+h−j] = σ2 j = i + h
∞

∑
i=0

ϕ2i+h = ϕh 1
1 − ϕ2

Cov(Zt, Zt+h) =
ϕhσ2

1 − ϕ2
= γ(h)



Modelling the deterministic part 
- 

Trend and seasonality estimation



Moving average 
The moving average of bandwidth  (related to the number of observations included in the 

calculation) is: 

 

It extracts the low-frequency components (trend and if  seasonality) 

The greater the window width, the greater the smoothing 

Well known in signal theory: it acts like a low-pass filter that eliminates noise. 
This estimator is non-parametric, since it assumes no a priori structure on the trend (e.g. linear or 
polynomial).

w

Ȳw(t) =
1

2w + 1

t+w

∑
s=t−w

Yt

2w + 1 = τ



Parametric models
Once we have observed the time series well, it is often possible to infer a parametric representation 
of the trend and seasonality: 

• Linear Regression 
• Generalised  additive models … 

Example: we assume that  with  and  some unknown parameters  

With the matrix notation       , we get  

We estimate parameters  and  using Ordinary Least Squares (OLS) estimator:    

Yt = at2+bcos
2πt
τ

+ εt a b

X =
1 cos 2π

τ
⋮ ⋮
T2 cos 2πT

τ

Y =
Y1
⋮
YT

ε =
ε1
⋮
εT

Y = X[a
b]+ε

a b [ ̂a
b̂] = (XT X)−1XTY



Trend - which parametric model?

To rid a series of its trend, we can proceed by differentiation: this works for series with polynomial 

trend 

The differentiation operator  is defined as  and at an order :  

By induction, it is enough to apply  times the differentiation operator in order to obtain a stationary 

time series and this gives an idea of the parametric model to choose!

Δ Δ(Yt) = Yt − Yt−1 k Δk(Yt) = Δ(Δk−1(Yt))

k

 Proposition: 

 Let  be a time series with a polynomial trend of order :  

 

 then the time series  has a polynomial trend of order 

Y k

Yt =
k

∑
j=0

ajtj + εt

Δ(Yt) k − 1



Differenciation
Proof:  

Using Binomial theorem, we get 

  

 

So the trend of  is polynomial of order .  

The noise term of the series is  is stationary as soon as  is: 

 

 

Yt−1 =
k

∑
j=0

aj(t − 1) j + εt−1

=
k

∑
j=0

aj

j

∑
ℓ=0

(−1) j−ℓ(ℓ
j ) tℓ + εt−1 = aktk +

k−1

∑
j=0

aj

j

∑
ℓ=0

(−1) j−ℓ(ℓ
j ) tℓ + εt−1

Δ(Yt) = Yt − Yt−1 k − 1
εt − εt−1 εt

𝔼[εt − εt−1] = μ − μ = 0
∀ h ∈ ℕ, Cov(εt − εt−1, εt+h − εt+h−1) = 𝔼[εtεt+h] − 𝔼[εtεt+h−1] − 𝔼[εt−1εt+h] + 𝔼[εt−1εt+h−1]

= 2γ(h) − γ(h − 1) − γ(h + 1)



Polynomial trend 
Once  (number of times we applied the differentiation operator before getting a stationary process) 

has been estimated, we assume that 

 

 With the matrix notation     ,  

we get     

We estimate parameters   using Ordinary Least Squares (OLS) estimator:    

̂k

Yt =
̂k

∑
j=0

ajtj + εt

X =

1 1 1 … 1
1 2 4 … 2 ̂k

⋮ ⋮ ⋮ … ⋮
1 T T2 … T ̂k

Y =
Y1
⋮
YT

ε =
ε1
⋮
εT

Y = [a0 a1 a2 …, a ̂k] X + ε

aj

̂a0

̂a1
⋮
̂a ̂k

= (XT X)−1XTY



Seasonality

To rid a series of an additive seasonality , we can proceed by differentiation 

With  is defined as  

Proof:  

 because by definition,  

Yt = St + εt

Δτ Δτ(Yt) = Yt − Yt−τ

Δτ(Yt) = Yt − Yt−τ = εt − εt−τ St = St−τ

 Proposition: 

Let  be a time series with an additive seasonality of period , then the time series  is 

stationary

Y τ Δτ(Yt)



Non-parametric models
An underlying parametric model is not always obvious and a classical assumption is: 

 ,  

where  is a smooth function on which no parametric assumptions are made and  is stationary 

A classical approach uses kernel estimators: 

Given a kernel , namely a non-negative symmetric integrable function with 

, and a bandwidth , the kernel estimator is:  

Yt = f(t) + εt

f ε

K : ℝ → ℝ

∫
+∞

−∞
K(x) dx = 1 w

̂fK,w(t) =
∑T

s=1 YsK( t − s
w )

∑T
s=1 K( t − s

w )



Kernel estimators

Examples:  

Gaussian:  

Uniforme:  

Triangular:  

Epanechnikov: 

K(x) =
1

2π
exp(−x2/2)

K(x) =
1
2

1|x|≤1

K(x) = (1 − |x |)1|x|≤1

K(x) =
3
4 (1 − x2)1|x|≤1



Kernel estimators - various bandwidth



Kernel estimators 
Note that the moving average is none other than the uniform kernel estimator: 

 

Thus, kernel estimators can be seen has weighted moving average.

̂fUniform,w(t) =
∑T

s=1
1
2 Ys1{|t−s|≤w}

∑T
s=1

1
2 1{|t−s|≤w}

=
1

2w + 1

t+w

∑
s=t−w

Yt = Ȳw(t)



Modelling the noisy part  
- 

 Residuals analysis



Check stationarity and characterise the noise
Once we have estimated the trend  and the seasonality , we can an estimation of the noise part  

of the time series, which can be, depending on the times series decomposition: 

• if additive:     

• if multiplicative:    

• if combination of the two:  , e.g.   

Then, we must check that the times series  is stationary: 

• Check moving averages  
• Check moving variances  

• Fit an ARMA process to predict  (because of Wold’s representation theorem) 

From now on, we denote by  the time series rid of its seasonality and trend

̂Tt
̂St εt

Yt = Tt + St + εt → ̂εt = Yt − ̂St − ̂Tt

Yt = Tt × St × εt → ̂εt =
Yt

̂St × ̂Tt

Yt = Tt + St × εt → ̂εt =
Yt − ̂Tt

̂St

̂εt

̂εt

ϵt = ̂εt



Importance of the Wold’s representation
:  , with  a white noise process 

:  

:  

The Wold’s representation theorem implies that, for any stationary process  can be written as 

• as a linear combination of a lagged values of a white noise process =  representation  

• as a linear combination of the lagged values of the process =  representation 

 Estimation of a lot of parameters… ARMA models are sparse representations (few no-zero 

parameters) to approximate the process 

How to choose  and  and estimate  ?

AR(p) ϵt =
p

∑
i=1

φiϵt−i + Zt Zt

MA(q) ϵt = Zt +
q

∑
i=1

θiZt−i

ARMA(p, q) ϵt = Zt +
p

∑
i=1

φiϵt−i +
q

∑
i=1

θiZt−i

εt

MA(∞)
AR(∞)

→

p q ϵt



Auto-correlation function (ACF)

 ρ(h) =
γ(h)
γ(0)

=
Cov(ϵt, ϵt+h)

Var(ϵt)
≈

1
n − h

∑n
t=h+1 (ϵt − ϵ)(ϵt+h − ϵ)

∑n
t=h+1 (ϵt − ϵ)2

, with ϵ =
1
n

n

∑
t=1

ϵt

Auto-regressive process of order 2: 
Zt = 0.9 × Zt−1 − 0.2 × Zt−2 + εt



Auto-correlation function (ACF)
Example: : , with  a white noise process of variance  

   

                       

Therefore,  

MA(1) ϵt = Zt + θ1Zt−1 Zt σ2

Cov(ϵt, ϵt+h) = 𝔼 [ ( Zt + θ1Zt−1) (Zt+h + θ1Zt+h−1)]
= 𝔼[ZtZt+h] + θ1𝔼[ZtZt+h−1] + θ1𝔼[Zt−1Zt+h] + θ2

1𝔼[Zt−1Zt+h−1]
= σ21h=0 + θ1σ21h=1 + θ1σ21h=−1 + θ2

1σ21h=0

ρ(h) =

1 if h = 0
θ1

1 + θ2
1

if h ± 1

0 else

Proposition 
If the time series  is a  process, its auto-correlation function satisfies

,  

( ϵt )t MA(q)
∀h > q ρ(h) = 0



Partial auto-correlation function (PACF)

  

where    

is the orthogonal projection of  over the space generated by 

  for the distance      

Other formulation: 

r(h) = Corr(ϵt − Pϵt+1,…,ϵt+h−1(ϵt), ϵt+h − Pϵt+1,…,ϵt+h−1(ϵt+h))
PX1,…,Xh

(Y) ∈ argmin
X=∑h

i=1 αiXi | (α1,…,αh)ℝh

𝔼[(Y − X)2]
Yt

Yt+1, …, Yt+h−1 d(X, Y) = 𝔼[(X − Y)2]

r(h) = Corr(ϵt, ϵt+h | ϵt+1, …, ϵt+h−1)



Partial auto-correlation function (PACF)
Idea:  is the part of  independent of the realisations of  which occur between  and 

 so  measures the «  pure  » correlation between  and , eliminating correlations with 
realisations that took place between these two observations   

Yt − PYt+1,…,Yt+h−1
(Yt) Yt Y t + 1

t + h − 1 r(h) Yt Yt+h

Auto-regressive process of order 2: 
Zt = 0.9 × Zt−1 − 0.2 × Zt−2 + εt

Durbin-Levinson 
algorithm  



Partial auto-correlation function (PACF)

Example: : , with  a white noise process of variance  

•  

•  

• For ,  and   so  

AR(1) ϵt = Zt + φ1ϵt−1 Zt σ2

r(0) = 1

r(1) = Corr(ϵ1, ϵt+1) = φ1

h ≥ 2 Pϵt+1,…,ϵt+h−1(ϵt) =
1
φ1

ϵt+1 Pϵt+1,…,ϵt+h−1(ϵt+h) = φ1ϵt+h−1

r(h) = Corr( 1
φ1

Zt+1, Zt+h) = 0

Proposition 
If the time series  is a  process, its partial auto-correlation function 

satisfies ,  

( ϵt )t AR(p)
∀h > p r(h) = 0



Choosing p and q 

Estimating coefficients 

• Yule-Walker equations for pure AR model 

• Least squares regression 

• Maximum likelihood estimation

Estimation of the ARMA processes

Auto-correlation function Partial auto-correlation function

AR(p) Decreases to 0 0 if h>p

MA(q) 0 if h>q Decreases to 0

ARMA(p,q) Decreases to 0 for h>q Decreases to 0 for h>p



Final prediction of the time series
Once the ARMA process has been estimated, if we observe , it is possible to predict  with 

  

To access to  we may use the  representation of the process and approximate them 

the start of the series 

Once the trend  and the seasonality , and the ARMA process (i.e  and ) 

• if additive:     

• if multiplicative:    

• if combination of the two:  , e.g.   

Remark: offline predictions 

ϵ1, …, ϵt−1 ϵt

̂ϵt =
̂p

∑
i=1

φ̂iϵt−i +
̂q

∑
i=1

̂θiZt−i

Z1, …, Zt−1 AR(∞)

̂Tt
̂St φ̂1, …, φ̂ ̂p

̂θ1, … ̂θ ̂q

Yt = Tt + St + εt → ̂Yt = ̂Tt + ̂St + ̂ϵt

Yt = Tt × St × εt → ̂Yt = ̂Tt × ̂St × ̂ϵt

Yt = Tt + St × εt → ̂Yt = ̂Tt + ̂St × ̂ϵt

→ ̂ϵt = 0



Validation
To validate the final modelling, it is crucial to analyse residuals  

• White noise: portemanteau test (uses Ljung–Box statistic):  

Under the white noise hypotheses, with  is the sample size,  the autocorrelation at lag , and   

the number of lags being tested:   

• Heteroskedasticity: Test the absence of autoregressive conditional heteroskedasticity (ARCH - 
model that describes the variance of the time series) components 

• Normality: no skewness nor kurtosis: Jarque–Bera test 

̂Zt = Yt − ̂Yt

n ̂ρk k h

n(n + 2)
h

∑
k=1

̂ρ2
k

n − k
∼ χ2

h



Other approaches 



ARIMA and SARIMA
Autoregressive integrated moving average (ARIMA) models generalise ARMA models for non-
stationarity in the sense of mean (but not variance) time series: a differencing step (« integrated » part 
of the model) can be applied one or more times to eliminate the non-stationarity of the trend 

  is suitable for modelling a time series with a polynomial trend of degrees  

 = Trend autoregression order 

 = Trend difference order 

 = Trend moving average order 

Seasonal Autoregressive Integrated Moving Average (SARIMA) extension of ARIMA models explicitly 
model the seasonality of the time series using four new parameters: 

 = Seasonal autoregressive order 

 = Seasonal difference order 

 = Seasonal moving average order 

 = The number of time steps for a single seasonal period

→ ARIMA(p, d, q) d
p
d
q

P
D
Q
m



Exponential smoothing 
Back to 1940s (signal processing) /1950s (in statistics with Brown and Holt) - no theoretical guarantees) 

The simplest exponential smoothing  of the time series  is 

 , with  

It may be use to predict :  

   (nice benchmark!) 

The closer  is to , the more memory the smoothing has, conversely, if  is close to , the past values 
of the time series are quickly forgotten 

 Estimation of  on training data 

Other approaches:  

• Double exponential smoothing - Holt linear 

• Triple exponential smoothing - Holt Winters

Ỹt Yt

Ỹt = αỸt−1 + (1 − α)Yt α ∈ [0,1]
Yt+1

̂Yt+1 =
t

∑
s=1

α(1 − α)sYt−s

α 1 α 0

→ α



That’s all folks!


