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Regression framework



Setting
Regression covers several statistical analysis methods used to approximate a random variable  with 

a set of other random variables   which are correlated to it; they are called explicative 

variables or features and gathered in a random vector 

Y
X1, X2, …, Xp

X

Assumption 
The regression model links the quantity of interest  with the  -dimensional vector 

 by assuming that, for any realisation ,  

  

where  is an unknown function and  

Y ∈ ℝ p
X ∈ ℝp (Yi, Xi)

i.i.d∼ (X, Y)
Yi = f ⋆(Xi) + εi

f ⋆ : ℝp → ℝ εi
i.i.d∼ 𝒩(0,σ2)

Aim:  

Finding a model  as close as possible to  in oder to forecast any new realisation  

of  based on the observation of  with 

̂f : ℝp → ℝ f ⋆ Ynew

Y Xnew
̂Ynew = ̂f(Xnew)



Setting

To estimate , we introduce 

   •  a loss function (quadratic, etc.)  

   •  a space of functions in which the model is sought  

The objective is to solve the following minimisation problem: 

 

To solve this minimisation problem, the expectation of the prediction error has to be approximated 

using a training data set

f ⋆

ℓ : ℝ × ℝ → ℝ+

ℱ

f̃ ∈ arg min
f∈ℱ

𝔼(Y, X)[ℓ(Y, f(X))]



What about data?
 is approximated on the basis of a sample of observations  

Rating abuse: 

•   is the -size vector of the observations of the random variable  

•  is the matrix of  nows and  columns which contains the  observations 

 of the random variables  

is approximated with 

  

Aim: find a model  such that 

𝔼[ℓ(Y, f(X))] (Yi, Xi1, …, Xip)i=1, …n

Y = (Y1, Y2, …Yn) n Y
X ∈ ℳn×p(ℝ) n p n

Xi = (Xi1, Xi2, …Xip) X1, …, Xp

𝔼[ ℓ(Y, f(X))]
𝔼[ℓ(Y, f(X))] ≈

1
n

n

∑
i=1

ℓ(Yi, f (Xi1, …Xip))
̂f : ℝp → ℝ

̂f ∈ arg min
f∈ℱ

1
n

n

∑
i=1

ℓ(Yi, f (Xi1, …Xip))



Model selection or how to choose ?ℱ
Choosing  is challenging: 

• it depends on the relationships between  and  (linear, polynomial, etc.) 

• it depends on the available training data (size , representativeness, quality)  

For a new observation , the error of the prediction  can be decomposed into an 

irreducible error due to the noise and a two-terms error: 

 +  +  

• If  is too restive,   is biased = under-fitting / over-smoothing 

 close to  but   far from   

• If  is too large,   has a high variance (it is very sensitive to the training data) = over-fitting 

  close to   but  far from 

ℱ
Y X

n

(Ynew, Xnew) ̂Ynew

Ynew − ̂Ynew = f ⋆(Xnew) + εnew − ̂f(Xnew) = εnew f ⋆(Xnew) − f̃(Xnew) f̃(Xnew) − ̂f(Xnew)

ℱ ̂f
̂f f̃ f̃ f ⋆

ℱ ̂f
f̃ f ⋆ ̂f f̃



Example - univariate linear regression

ℱ = {fα,β : x ↦ α + xβ}



Example - rupture detection

ℱ = {fx0,a0,…,xK,aK
: x ↦

K

∑
k=1

ak1xk−1≤x<xk
(x)}



Linear regression



Univariate linear regression 



Formulation

Let  be  observations independent and identically distributed of two reals random 
variables  and  
  
Assumptions 

 where the processus  is a white noise, namely  with  and 
 

Thus the space of models is  =   

and to estimate , we consider the quadric loss function 

(Yi, Xi)i=1,…,n n
Y X

Yi = Xiβ⋆ + εi (εi)i εi
i.i.d∼ ε 𝔼[ε] = 0

Var(ε) = σ2

ℱ {β |β ∈ ℝ}
β⋆ ∈ ℝ ℓ :

ℝ × ℝ → ℝ+

(y, ̂y) ↦ (y − ̂y)2



Ordinary Least Squares

The Ordinary Least Squares (OLS) estimator minimises the quadratic error computed over the sample 
: 

    with     

As the function  is continuous, derivable, and convex, this minimisation problem is solved by 
cancelling its derivative: 

     

Therefore, the Ordinary Least Squares estimator is  

(Yi, Xi)i=1,…,n

̂βOLS ∈ arg min
β∈ℝ

Err(β) Err(β) =
1
n

n

∑
i=1

(Yi − Xiβ)2

Err

∂Err(β)
∂β

=
∂(∑n

i=1 (Yi − Xiβ)2)
∂β

= −
n

∑
i=1

2Xi(Yi − Xiβ) = 0

̂βOLS =
∑n

i=1 XiYi

∑n
i=1 X2

i



Example
 Xi

i.i.d∼ 𝒰(−1,1) εi
i.i.d∼ 𝒩(0,1) β⋆ = 3 n = 100 ̂βOLS = 3.08



Ordinary Least Squares distribution 
Assumption the normality of : , the distribution of the ordinary least squares is  

 

Proof:  

Recalling that if  and  are two independent random variables that are 

normally distributed then , we get that

 and thus as   , 

Y Yi |Xi ∼ 𝒩(Xiβ, σ2)
̂βOLS |X1, …Xn ∼ 𝒩(β,

σ2

∑n
i=1 X2

i
)

Z1 ∼ 𝒩(μ1, σ2
1) Z2 ∼ 𝒩(μ2, σ2

2)

a1Z1 + a2Z2 ∼ 𝒩(μ1 + μ2, a2
1σ2

1 + a2
2σ2

2)
n

∑
i=1

XiYi |X1, …Xn ∼ 𝒩(
n

∑
i=1

XiXiβ, σ2
n

∑
i=1

X2
i ) ̂βOLS =

∑n
i=1 XiYi

∑n
i=1 X2

i

̂βOLS |X1, …Xn ∼ 𝒩(β,
σ2

∑n
i=1 X2

i
)



Ordinary Least Squares distribution 



Multivariate linear regression 



Formulation
Let  be  observations independent and identically distributed of  reals 
random variables   
  
Assumptions 

 where the processus  is a white noise 

Using the matrix notations , , and   

the design matrix the assumption can be rewritten 

  

The space of models is now  =   and we still consider the quadric loss function

(Yi, Xi1, … Xip)i=1,…,n n p + 1
Y, X1, …, Xp

Yi = Xi,1β⋆
1 + Xi,2β⋆

2 + … + Xi,pβ⋆
p + εi (εi)i

Y =
Y1
⋮
Yn

β⋆ =
β⋆

1
⋮

β⋆
p

ε =
ε1
⋮
εn

X =

X1,1…X1,p

⋮ Xi,j ⋮
Xn,1…Xn,p

∈ ℳn×p(ℝ)

Y = Xβ⋆ + ε
ℱ {β |β ∈ ℝp}



Ordinary Least Squares

The Ordinary Least Squares (OLS) estimator minimises the quadratic error computed over the sample 
: 

    with     

As the function  is continuous, derivable, and convex, this minimisation problem is solved by 
cancelling its derivative: 

     

Therefore, the Ordinary Least Squares estimator is  

(Yi, Xi)i=1,…,n

̂βOLS ∈ arg min
β∈ℝ

Err(β) Err(β) =
1
n

n

∑
i=1

(Yi − Xiβ)2

Err

∂Err(β)
∂β

=
∂(∑n

i=1 (Yi − Xiβ)2)
∂β

= −
n

∑
i=1

2XT
i (Yi − Xiβ) = 0

̂β OLS = (XXT)−1XTY



Example

 

Xi1
i.i.d∼ 𝒰(−1,1)

Xi2
i.i.d∼ 𝒰(−1,1)

Xi3
i.i.d∼ 𝒰(−1,1)

εi
i.i.d∼ 𝒩(0,1)

β⋆ = [3, − 2, 1]
n = 100

̂βOLS = [3.02, − 2.15, 1.18]



Ordinary Least Squares distribution 

Assumption the normality of : , the distribution of the ordinary least squares is  

 

Proof:  

 

 

□ 

Y Yi |Xi ∼ 𝒩(Xiβ⋆, σ2)
̂βOLS |X ∼ 𝒩(β⋆, (XTX)−1σ2)

𝔼[ ̂β OLS] = 𝔼[(XXT)−1XTY] = 𝔼[(XXT)−1XTXβ⋆ + ε] = β⋆

Var( ̂β OLS) = Var((XXT)−1XTY) = (XXT)−1XTVar(Y)X(XTX)−1 = (XTX)−1σ2



OLS and likelihood
The likelihood of  given  observations (  probability of observing these observations if they are 

well distributed according to the model defined by ) in the case where the noise is Gaussian is 

 

Maximising the likelihood is equivalent to minimising the quatradic error   so the maximum 

likelihood estimator equals to the ordinary least squares estimator 

When the data no longer respect the hypothesis of independence or constant variance: 

 with  a positive definite matrix, the likelihood is 

 

and both estimators are not equal anymore

β n ∼
β

L(X, β, σ) =
n

∏
i=1

1

2πσ2
exp( −

∥Y − Xβ∥2

2σ2 )
∥Y − Xβ∥2

Y ∼ 𝒩(Xβ⋆, Vσ2) V

L(X, β, σ) =
n

∏
i=1

1
2πσ2 |V |

exp( −
(Y − Xβ)TV(Y − Xβ)

2σ2 )



Generalised linear model



Formulation

Let  be  observations independent and identically distributed of  reals 
random variables   
  
Assumptions 

There exists a link function  monotonic and regular (for example the identity or log functions) 

relating the expected value of Y to the predictor variables via a structure such as 

  

Knowing , observations follows an exponential distribution: there exist three functions ,  and , a two 
parameters  and  such that the density of  is  

(Yi, Xi1, … Xip)i=1,…,n n p + 1
Y, X1, …, Xp

g

g(𝔼[Y]) = Xβ⋆

X a b c
ϕ θ Y | X

fY|X(y) = exp( yθ − b(θ)
a(ϕ)

+ c(y, ϕ))



Exponential family

 

Use case examples:  
• Modelling electrical power consumption: Gaussian 
• Modelling arrivals and departures at electric vehicle charging stations: Poisson

Gaussian(μ, σ2) Poisson(λ) Binomiale(n, p) Gamma(α, β)
θ μ log λ log p

1 − p − α
β

ϕ σ2 1 1 1
α

a(ϕ) ϕ ϕ ϕ ϕ

b(θ) θ2

2 exp θ n log(1 + exp θ) −log(−θ)

c(y, θ) 1
2 ( y2

ϕ + log 2πϕ) −log y! log (n
y) 1

ϕ log y
ϕ − log(yΓ( 1

ϕ ))
f(y) 1

σ 2π
exp( − (y − μ)2

2σ2 ) λy exp(−y)
y! (n

y) py(1 − p)n−y βα

Γ(α) yα−1 exp( − βy)



Likelihood and IRLS

Si la variable aléatoire  est dans la famille exponentielle alors  

   and    

As , the likelihood of  and the  observations  is  

 

As it is then difficult to maximise the likelihood exactly, Newton's method (a numerical method with a 

step for calculating the gradient and the Hessian of the log-likelihood) is used to estimate iteratively  

At each iteration, we need to solve a weighted least squares problem - see Algorithm IRLS : iteratively 
re-weighted least square (cf. Wood) for further details 

Y
𝔼[Y] = b′ (θ) Var(Y) = b′ ′ (θ)a(ϕ)

g(𝔼[Y]) = Xβ β n (Yi, Xi1, … Xip)i=1,…,n

L(X, β) =
n

∏
i=1

fai,bi,ci,θi,ϕi
(Yi)

β



Online approaches



Online Linear Regression
Initialisation:  

•  estimated with a sample  

   and  

For  

• Observe a new batch  

• Update the estimator  with  

 

      

                                                                     as soon as batches have equal size

̂β0 (Yi, Xi1, … Xip)i=1,…,n

̂β0 ∈ arg min
β∈ℝp

∥Y − Xβ∥2 = arg min
β∈ℝp

n

∑
i=1

(Yi −
p

∑
j=1

xi,jβj) H1 = XTX

k = 2,…
(Yt, Xt1, … Xtp)t=tk,…,tk+1−1 = (Yk, Xk)

̂βk = ̂βk−1 + (Hk)−1XT
k (Yk − Xkβk−1) Hk = Hk−1 + XT

k Xk

̂βk ∈ arg minβ∈ℝp ∑k
l=1 ∥Yk − Xkβ∥2

∈ arg minβ∈ℝp ∑tk
s=1 (Yi − Xiβ)2



Weighted Linear Regression
How to give more « importance » to recent data ? 

    with     and  or  

As the function to minimise is continuous, derivable, and convex, this minimisation problem is solved 
by cancelling its derivative: 

     

  with    and   

 New challenge: tuning   

Interpretation with an example: with  so after 200 time steps, observations 

can be considered as totally forgotten

̂βt ∈ arg min
β∈ℝ

t

∑
s=1

ωs (Ys − Xsβ)2 ωs = μt−s μ ∈ ] 0,1 [ ωs = exp( − η(t − s))

∂(∑t
s=1 ωs(Ys − Xsβ)2)

∂β
= −

t

∑
s=1

2ωsXT
s (Ys − Xsβ) = 0

̂β t = (X̃TX̃)−1X̃TỸ X̃sj = ωsXsj Ỹs = ωsYs

→ μ
μ = 0.95, μ200 ≈ 3.10−5



Weighted Online Linear Regression
Assumption: 

For time step , we get access to a sample  

which is big enough to ensure that  is inversible 

Initialisation:  

•  and  

For  
• Observe  

• Update the estimator  with  

t1 = 1, t2, t3, …, tk, … (Yt, Xt1, … Xtp)t=tk,…,tk+1−1 = (Yk, Xk)
XT

k Xk

̂β1 = (X1XT
1 )−1XT

1 Y1 H1 = XT
1 X1

k = 2,…
(Yt, Xt1, … Xtp)t=tk,…,tk+1−1 = (Yk, Xk)

̂βk = ̂βk−1 + (Hk)−1XT
k (Yk − Xkβk−1) Hk = μHk−1 + XT

k Xk

̂βk ∈ arg min
β∈ℝp

k

∑
l=1

μk−l∥Yk − Xkβ∥2



Penalised Regression



Bias - Variance trade-off
The ordinary least squares method allows to estimate a model  from a sample  

Under the linear model assumption , the estimator  is unbiased with minimum variance 

among unbiased estimators  (Gauss-Markov Theorem) 

For a new set of explanatory variables it is then possible to predict   with  

The quadratic error of this prediction can be decomposed into an irreducible error , a term related 

to the variance of the estimator   and the squared bias of the estimator : 

̂f(X) = X ̂β (Yi, Xi)i=1,…,n

Y = Xβ⋆ + ε ̂β

Xnew Ynew
̂Ynew = Xnew

̂β
σ2

XnewVar( ̂β)Xnew (β⋆ − 𝔼( ̂β))2

𝔼[(Ynew − ̂Ynew)2] = 𝔼[(Xnewβ⋆ + εnew − Xnew
̂β)2]

= σ2 + 𝔼[(Xnew(β⋆ − ̂β))2]
= σ2 + XnewVar( ̂β)XT

new + (β⋆ − Xnew𝔼( ̂β))
2
XT

new



Bias - Variance trade-off - Illustration

Data Mining, Inference, and 

Prediction, Trevor Hastie, 

Robert Tibshirani and Jerome 

Friedman, Springer series in 

statistics - 2001



Ridge regression



Motivation
Example:  

    • Univariate linear model:  

    • Adding of a second explanatory variable:  

 is an unbiased estimator  

 

of variance 

Y = X1β⋆
1 + ε

X2 = X1 + noise

∀a ∈ ℝ, βa = [(a + 1)β⋆
1

−aβ⋆
1 ]

𝔼[ ̂Y] = 𝔼[(a + 1)X1β⋆
1 − aX2β⋆

1 ] = X1β⋆
1 = 𝔼[(a + 1)X1β⋆

1 − aX1β⋆
1 − aX1noise] = X1β⋆

1 = 𝔼[Y]

Var( ̂Y ) = 𝔼[((a + 1)X1β⋆
1 + aX1β⋆

1 + aX1noise − X1β⋆
1 )

2

] = a2β2
1Var( noise )



Motivation
 

 

 

 

 

Xi1
i.i.d∼ 𝒰(−1,1)

Xi2 = X1 + i.i.d∼ 𝒰(−1,1)/5

…

Xi9 = X1 + i.i.d∼ 𝒰(−1,1)/5

εi
i.i.d∼ 𝒩(0,1)

β⋆ =

−1
1

−0.5
0.5

−0.2
0.2
0
0
1



Motivation

β⋆ =

−1
1

−0.5
0.5

−0.2
0.2
0
0
1

For  

• Sample   

• Estimate  

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k = (XXT)−1XTY



Penalisation
If the coefficients of the estimator  are not constraints  

    • they may explode 

    • the variance of estimator may be high  

Indeed, if the explanatory variables are correlated, the unicity of the solution is not obvious (a high coefficient 

for a variable can be cancelled by a high negative coefficient on another correlated variable)  

→ Need to impose a constraint on the value of the coefficients: 

 

This problem is equivalent to solve 

β

arg min
β∈ℝp

∥Y − Xβ∥2 with ∥β∥2 ≤ constant

arg min
β∈ℝp

∥Y − Xβ∥2 + λ∥β∥2 = arg min
β∈ℝp

n

∑
i=1

(Yi −
p

∑
j=1

Xi,jβj + λ
p

∑
j=1

β2
j )



Ridge estimator distribution
As the function   is continuous, derivable, and convex so the minimisation 

problem is solved by cancelling its derivative 

 

The Ridge estimator is thus 

 

This estimator is biased 

 

And its variance satisfies 

 

β ↦ ∥Y − Xβ∥2 + λ∥β∥2

∂(∥Y − Xβ∥2 + λ∥β∥2)
∂β

= 2XT(Y − Xβ) + 2λβ

̂βλ = (XTX + λIp)−1XTY

𝔼[ ̂βλ] = 𝔼[(XTX + λIp)−1XT(Xβ⋆ + ε)] = β⋆ − λ(XTX + λIp)−1β⋆

Var( ̂βλ) = σ2(XTX + λIp)−1XTX(XTX + λIp)−1



Example

β⋆ =

−1
1

−0.5
0.5

−0.2
0.2
0
0
1

For  

• Sample   

• Estimate  and 

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k ̂β Ridge,k

Ordinary Least Squares estimator

Ridge estimator



Example

β⋆ =

−1
1

−0.5
0.5

−0.2
0.2
0
0
1

For  

• Sample   

• Estimate  and 

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k ̂β Ridge,k

Ordinary Least Squares estimator 
Ridge estimator



Example

For  

• Sample   

• Estimate   

For a new sample  

Compute the Root Mean Squared Error (RMSE) 

for each : 

k = 1,…,100

(Yi, Xi1, … Xip)i=1,…,n

̂β k = (XXT)−1XTY

(Ynew,i, Xnew,i1, … Xnew,ip)i=1,…,n

k = 1,…,100
n

∑
i=1

( ̂Yk
new,i − Ynew,i)2

Ordinary Least Squares estimator 
Ridge estimator

RMSE in prediction



LASSO regression



Motivation and penalisation
LASSO, for Least Absolute Shrinkage and Selection Operator, regression has introduced in a variable 
selection perspective and under the assumption that  is a sparse vector (i.e., lots of its coefficients are zero) 

→ Need to impose a constraint on the number of non-zero coefficients  

 

But this norm is not continuous and, thus non sub derivative 

Therefore, LASSO aims to solve  

with  

This problem is equivalent to solve 

β⋆

arg min
β∈ℝp

∥Y − Xβ∥2 with ∥β∥0 =
p

∑
j=1

1βj≠0 ≤ constant

arg min
β∈ℝp

∥Y − Xβ∥2 ∥β∥1 ≤ constant

arg min
β∈ℝp

∥Y − Xβ∥2 + λ∥β∥1 = arg min
β∈ℝp

n

∑
i=1

(Yi −
p

∑
j=1

Xi,jβj + λ
p

∑
j=1

|βj |)



Ridge versus LASSO - Illustration

Data Mining, Inference, and 

Prediction, Trevor Hastie, 

Robert Tibshirani and Jerome 

Friedman, Springer series in 

statistics - 2001



Example

 

 

 

 

Xi1
i.i.d∼ 𝒰(−1,1)

…

Xi9
i.i.d∼ 𝒰(−1,1)

εi
i.i.d∼ 𝒩(0,1)

β⋆ =

1
0
0
0
0
0
0
0
0



Example
For  

• Sample   

• Estimate  and 

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k ̂β LASSO,k

Ordinary Least Squares estimator

LASSO estimator

β⋆ =

1
0
0
0
0
0
0
0
0



Example
For  

• Sample   

• Estimate  and 

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k ̂β LASSO,k

Ordinary Least Squares estimator 
LASSO estimator

β⋆ =

1
0
0
0
0
0
0
0
0



Example

For  

• Sample   

• Estimate   

For a new sample  

Compute the Root Mean Squared Error (RMSE) 

for each : 

k = 1,…,100

(Yi, Xi1, … Xip)i=1,…,n

̂β k = (XXT)−1XTY

(Ynew,i, Xnew,i1, … Xnew,ip)i=1,…,n

k = 1,…,100
n

∑
i=1

( ̂Yk
new,i − Ynew,i)2

Ordinary Least Squares estimator 
LASSO estimator

RMSE in prediction



Regularisation parameter tuning



 manages the bias variance trade-offλ
Ridge and LASSO estimators strongly depend on  

    • Chaque   donne une unique solution 

    •  is the regularisation - or penalisation - parameter 

     
Extreme behaviours: 

      •   :  

      •   :  

The parameter  deals with the bias-variance trade-off:  

        •   :  but their variances may explode  

        •  :  but their bias are equal to 

λ
λ

λ

λ = 0 ̂βRidge
λ = ̂βLasso

λ = ̂βOLS

λ → ∞ ̂βRidge
λ = ̂βLasso

λ =
0
⋮
0

λ
λ = 0 𝔼[ ̂βRidge

λ ] = 𝔼[ ̂βLasso
λ ] = 𝔼[ ̂βOLS] = β⋆

λ → ∞ Var( ̂βRidge
λ ) = Var( ̂βLasso

λ ) = [
0…0

⋱
0…0] −β⋆



Tuning  
Tuning the regularisation parameter to get the best prediction error is a « selection model » issue: 

  with   

 -path: need of a training and a testing data sets, time and computational ressource consuming 

 Cross-validation criteria

λ⋆ ∈ arg min
λ∈ℝ+

𝔼(Y, X)[(Y − X ̂βλ)2] ̂βλ = (XTX + λIp)−1XTY

→ λ

→

Error on training data set 
testing data set

λ⋆



Cross-validation criteria  
 

    •  Remove the observation  for the training data set 

    •  Estimate   

    •  Compute the prediction error  

The cross-validation criteria is defined as  

 

  estimators to compute! 

But for the Ridge regression, it is possible to prove that  

 with  

 the single Ridge estimator is enough! 

∀i = 1,…, n
(Yi, Xi)

̂β−i
λ = (XT

−iX−i + λIp)−1XT
−iY−i

(Yi − ̂β−i
λ Xi )2

CV(λ) =
1
n

n

∑
i=1

(Yi − Xi
̂β−i
λ )2

→ n

CV(λ) =
1
n

n

∑
i=1

(Yi − Xi
̂β−i
λ )2 =

1
n

n

∑
i=1

(Yi − Xi
̂βλ)2

(1 − Aλi,i)
2 Aλ = X(XTX + λIp)−1XT

→



Influence matrix and degree of freedom

The influence matrix  is the matrix such as  

    • OLS:   

    

The trace  equals to the number of 

parameters /coefficients of  to estimate and is called the degree of freedom 

By analogy, for any model, the degree of freedom is the trace of its influence matrix :  

   •  Ridge:  and , with  the singular values of 

A ̂Y = AY

AOLS = X(XTX)−1XT

Tr(AOLS) = Tr(X(XTX)−1XT) = Tr(XTX(XTX)−1) = Tr(Ip) = p

β

A df(A) = Tr(A)

ARidge
λ = X(XTX + λIp)−1XT df(ARidge

λ ) =
p

∑
j=1

d2
j

d2
j + λ

dj X



Singular value decomposition
The singular value decomposition (SVD) is a factorisation of a real  matrix  of the form  where   
and  are  and  orthogonal matrices and the only non-zero coefficients of the  matrix  are the 
diagonal coefficients  , called singular values

n × p X UDVT U
V n × n p × p n × p D

dj = Djj

p

n

X =

0 0
0 0
0 0
0 0 0

D

n

p

n

U

n

VT

p

p

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U UT = In

1 0 0
0 1 0
0 0 1

VT V = Ip



Generalised cross-validation criteria  
We recall that for the Ridge regression 

 

With the approximation   , we define a generalised cross-validation criteria generally 

used in the software packages as 

CV(λ) =
1
n

n

∑
i=1

(Yi − Xi
̂β−i
λ )2 =

1
n

n

∑
i=1

(Yi − Xi
̂βλ)2

(1 − ARidge
λi,i )2

Aλi,i
≈

Tr(Aλ)
n

GCV(λ) =
1
n

n

∑
i=1

(Yi − Xi
̂βλ)

2

(1 −
df(Aλ)

n )
2



Elastic net regression



Elastic net regression
Elastic net linear regression uses the regularisations from both the LASSO and Ridge regression 

It eliminates the following LASSO limitation: 

when ,  can not have more than  non-zero coefficients (saturation) 

 

or equally, with  

 

n < p ̂βLASSO n

̂βElastic.net ∈ arg min
β∈ℝp

∥Y − Xβ∥2 + λ1∥β∥1 + λ2∥β∥2
2

0 ≤ α ≤ 1

̂βElastic.net ∈ arg min
β∈ℝp

∥Y − Xβ∥2 + λ(α∥β∥1 + (1 − α)∥β∥2
2)



Online approaches

Ridge Regression: Recursive ridge regression using second-order stochastic algorithms. 
Antoine Godichon-Baggioni, Bruno Portier, Wei Lu. Computational Statistics & Data 
Analysis (2023) 

LASSO Regression: An homotopy algorithm for the Lasso with online observations. 
Pierre Garrigues and Laurent Ghaoui. Advances in neural information precessing 
systems 21 (2008)



Implementation
beta_ols <- lm(Y~ X-1)$coefficients 

library(glmnet) 

beta_ridge <- glmnet(X, Y, alpha = 0, lambda = Lambda)$beta 

beta_lasso <- glmnet(X, Y, alpha = 1, lambda = Lambda)$beta 

beta_elasticnet <- glmnet(X, Y, alpha = alpha, lambda = Lambda)$beta 

⚠  = alpha,  = l1_ratio 

from sklearn.linear_model import LinearRegression 

beta_ols = LinearRegression().fit(X,Y).coef_ 

from sklearn.linear_model import Ridge, Lasso, ElasticNet  

beta_ridge = Ridge(alpha = lambda).fit(X,Y).coef_ 

beta_lasso = Lasso(alpha = lambda).fit(X,Y).coef_ 

beta_elasticnet = ElasticNet(alpha = lambda, l1_ratio = 
alpha).fit(X,Y).coef_

λ α



Generalised additive models



Formulation, estimation and  
implementation



Formulation

A generalised additive model (GAM) relates a random variable  to some explanatory variables 
 via a link function  and a structure such as 

 

Assumptions:  

• An exponential family distribution is specified for  

• The unknown functions  are smooth 

 To estimate , parametric forms may be specified

Y
X1, X2, … g

g(𝔼[Y]) = f1(X1) + f2(X2) + f3(X1, X3) + … = ∑
k

fk (Xk1
, Xk2

, …)

Y
f1, f2, …

→ f1, f2, …



A basic univariate model
We consider a simple model 

  , for  

where  is an unknown function and   

Linear regression is not suitable!  

Other solutions:  

•  Data transformation  

•  Kernel methods  

•  k-nearest neighbours  

•  Regression on a basis of functions  

- Fourier functions (for periodic functions) 

- Wavelets  

- Splines

Yi = f ⋆(Xi) + εi i = 1,…n

f ⋆ : ℝ → ℝ εi
i.i.d∼ 𝒩(0,σ2)



A basic univariate model
We introduce a basis of functions  and assume that 

 

With ,  ,  and , we obtain the linear 

regression model formulation 

b1, , …bq

f ⋆ ∈ {f : x ↦
p

∑
j=1

βjbj(x)}

Y =

Y1
⋮
Yi
⋮
Yn

X =

b1(X1) ⋯ bp(X1)
⋮ ⋮

b1(Xi) ⋯ bp(Xi)
⋮ ⋮

b1(Xn) ⋯ bp(Xn)

β =
β1
⋮
βp

ε =

ε1
⋮
εi
⋮
εn

Y = Xβ + ε



Example: B-splines (De Boor, 1978) 

Splines are functions defined piecewise by polynomials  

With  knots , B-splines are defined on  by induction: 

 

For  

 

q + 1 0 = x0 < x1 < x2 < … < xq = 1 [0,1]

∀j = 1,…, q : bj,0(x) =
1 if xj−1 < x < xj

0 else

d = 1,…

bj,d(x) =
x − xj−1

xj−1+p − xj−1
bj−1,d−1(x) +

xj+p − x
xj+p − xj

bj,d−1(x)



Example: B-splines (De Boor, 1978) 

d = 1 d = 2 d = 3



Knot position and number



Knot position and number

q = 2
q = 20
q = 200

Over-fitting

Over-smoothing



Regression on spline basis - Penalisation
→ Need to impose a constraint on the smoothness: 

 

As   , by linearity of the differentiation   

Therefore,   where  

With  the -matrix such as  , we get that  and the problem is 

equivalent to solve, for a regularisation parameter  

 

→ 

arg min
β∈ℝp

∥Y − f(X)∥2 with ∫ℝ
f′ ′ (x)2dx ≤ constant

f(x) =
p

∑
j=1

βjbj(x) f′ ′ (x) =
p

∑
j=1

βjb′ ′ j (x)

∫ℝ
f′ ′ (x)2dx = βT ∫ℝ

d(x)d(x)Tdx β d(x) =
b′ ′ 1(x)

⋮
b′ ′ p(x)

S p × p Sjj′ 
= ∫ℝ

b′ ′ j (x)b′ ′ j′ 
(x)dx ∫ℝ

f′ ′ (x)2dx = βTSβ

λ > 0
arg min

β∈ℝp
∥Y − Xβ∥2 + λβTSβ

̂βλ = (XTX + λS)−1XTY



Regularisation parameter 



Regularisation parameter 

λ = 0.1
λ = 0.01
λ = 0

Over-smoothing

Over-fitting



Generalised cross-validation criteria  

With  and ,  

The regularisation parameter is chosen by minimising the generalised cross-validation criteria 

Aλ = X(XTX + λS)−1XT ̂βλ = (XTX + λS)−1XTY

GCV(λ) =
1
n

n

∑
i=1

(Yi − ̂βλXi)
2

(1 −
Tr(Aλ)

n )
2



From GAM to linear regression
We recall the formulation  

 

For each   

A spline basis and a penalisation are specified  

For bi/multi-variate functions:  

Bivariate function basis (thin plates) 

Tensor product  

A constraint is added - , e.g. - to ensure the identifiability of the model 

 We obtain a linear formulation   and a penalisation 

g(𝔼[Y]) = f1(X1) + f2(X2) + f3(X1, X3) + … = ∑
k

fk (Xk1
, Xk2

, …)

k

f(x1, x2) =
p

∑
j=1

p′ 

∑
j′ =1

β1
j β2

j′ 
b1

j (x1)b2
j′ 
(x2)

∫ fk(x)dx = 0

→ fk (Xk1
, Xk2

, …) = Xkβk λkβT
k Skβk



From GAM to linear regression

With   and , we obtain an over-parametrised linear model formulation 

  

The penalisation terms are gathered into  where , so we aim to solve 

 

→  and the vector  is chosen to minimise the GCV criteria 

X = [X1 |… |Xk |…] β =

β1
⋮
βk
⋮

Y = Xβ + ε

βTSλβ Sλ = ∑
k

λk

0 0 0
0 Sk 0
0 0 0

arg min
β

∥Y − Xβ∥2 + βTSλβ

̂βλ = (XTX + Sλ)−1XTY λ



Implementation
library(mgcv) 

eq  <- y ~ s(x1, bs = 'cr', k = 10, by = x2) +  

              s(x3, bs = 'cc', k = 10) +  

              as.factor(x4) + te(x5,x6) 

mod <- gam(formula = eq, data = data_train) 

summary(mod) 

hat_y <- predict(mod, newdata = data_test) 

⚠ not as mature as mgcv 

import statsmodels.api as sm 

from stats models.gam.api import GLMGam, BSplines 

mod = GLMGam.from_formula(y ~ x1, data = data_train,  

   smoother = BSplines(data_train[[‘x2’,’x3’,’x3’]],  

   df = [10,10,10], degree = [3,3,3]), alpha = alpha).fit()



Online approaches



Online Generalised Additive Models
First idea: retrain all the model at each time step and eventually weight the observations 

 

Some concerns (that may be true for any complex / blackbox model): 

    • GAM are complex models which need lots of data to be trained so  can not go to fast to  

    • GAM are over-parametrised linear models 

  Trained to be good on all the data points (for each  is high enough) 

  Is a re-training of all the parameters necessary (interpretability, robustness)? 

    • Costly in terms of computing time and memory 

    Remark: in the mgcv R-package,  bam() function updates an existing GAM with new data 

    • Need of model which reacts rapidly and locally  

arg min
fk

t

∑
s=1

ωs(Ys − ∑
k

fk (Xs,k1
, Xs,k2

, …))
2

ωt 0

→ ωt

→



Online Generalised Additive Models
Idea:  

Keep the estimated functions  

But introduce some coefficients  that will be re-estimated at each time step  to allow the effect 

to evolve: 

̂fk

αt,k t
̂ft,k = αt,k

̂fk

̂fk αk
̂fk



Adaptive GAM with online linear regression

Underlying assumption:   

with  and   

These coefficients can be estimated using online linear regression: 

 

Yt = ∑
k

αk,t
̂fk (Xt,k1

, Xt,k2
, …) + noise = ̂f(Xt)Tαt + εt

α =
⋮
αk
⋮

̂f(X) =
⋮
̂f(X)
⋮

α̂t+1 ∈ arg min
αk

t

∑
s=1

ωs(Ys − ∑
k

αk
̂fk (Xs,k1

, Xs,k2
, …))

2



Adaptive GAM with Kalman filter
Underlying assumption:  

 where  

 where  

Kalman filter algorithm: 

 

 

Yt = ̂f(Xt)Tαt + εt εt ∼ 𝒩(0,σ2)
αt = αt−1 + ηt ηt ∼ 𝒩(0, Σ)

α̂t = α̂t−1 +
Pt−1 ̂f(Xt−1)

̂f(Xt−1)TPt−1
̂f(Xt−1) + σ2 (Yt−1 − αT

t−1
̂f(Xt−1))

Pt = Pt−1 −
Pt−1

̂f(Xt−1) ̂f(Xt−1)TPt−1
̂f(Xt−1)TPt−1

̂f(Xt−1) + σ2
+ Σ



Generalisation of these two approaches

Functions  could be  

Trees of a random forest 

Outputs of the last layer of a neural network 

…  

fk



Quantile regression



Motivation
Whereas the least squares method provides an estimate of the expectation (conditional on the 

explanatory variables) of the random variables , quantile regression seeks to approximate the 

median or other quantiles  

  

It is useful for predicting thresholds  

When several regressions are performed, it is possible to get a good idea of the general distribution 

of  

Quantile regression is less sensitive to outliers ( -loss)

Y

Y

L1



Formulation
With    the density and  the cumulative distribution 

function of the random variable , by definition, the 

quantile  satisfies 

 

With  the pinball loss function 

  

where  and  

The quantile  minimise the function 

  

fY FY

Y
qα

FY (qα) = ∫
qα

−∞
fY(y)dy = ℙ(Y ≤ qα) = α

ℓα

ℓα(y − q) = α |y − q |+ + (1 − α) |y − q |−

|x |+ = max(x,0) |x |− = max(−x,0)

qα

q ↦ 𝔼Y[ℓα(Y − q)]

α1 − α



Proof
We solve the convexe minimisation problem   by differentiation   

 

             

             

Thus, the solution  satisfies 

q⋆ ∈ arg min
q

𝔼[ℓα(Y − q)]

0 = 𝔼[ ∂ℓα(Y − q)
∂q ] = ∫

+∞

−∞

∂ℓα(y − q)
∂q

f(y)dy

= − (1 − α)∫
q

−∞
f(y)dy + α∫

+∞

q
f(y)dy

= (α − 1)F(q) + α(1 − F(q)) = α − F(q)

q⋆ F(q⋆) = α



Estimation
Let  be  observations independent and identically distributed of  reals 

random variables , an estimator of the quantile  can be found by solving 

 

It is possible to use a gradient descent method since the function to be is almost universally derivable  

The Iteratively Reweighted Least Squares algorithm (IRLS) can also be used

(Yi, Xi1, … Xip)i=1,…,n n p + 1

Y, X1, …, Xp α

̂β α ∈ arg min
β∈ℝp

1
n

n

∑
i=1

ℓα(Yi − Xiβ)



That’s all folks!


