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Regression framework



Setting

Regression covers several statistical analysis methods used to approximate a random variable ¥ with

a set of other random variables X, X,, ..., X, which are correlated to it; they are called explicative

variables or features and gathered in a random vector X

Assumption

The regression model links the quantity of interest ¥ € R with the p-dimensional vector
ii.d

X € R? by assuming that, for any realisation (¥, X)) ~ (X, Y),
Y, =F*X) +e,
ii.d

where f* : R” — R is an unknown function and €, ~ N (0,6%)

Aim:
Finding a model /: R” — R as close as possible to f* in oder to forecast any new realisation Y.,

of Y based on the observation of X, .. with V. = f(X,

ew)



Setting

To estimate f*, we introduce
e/ : RXR — R™ aloss function (quadratic, etc.)

® & a space of functions in which the model is sought

The objective is to solve the following minimisation problem:

f e argminEgy :f(Y, X))

fesF

To solve this minimisation problem, the expectation of the prediction error has to be approximated

using a training data set



What about data?

- [f(Y,f(X))] is approximated on the basis of a sample of observations (Y ) T le)i_l )

Rating abuse:
e Y=(Y,,Y,,...Y) is the n-size vector ot the observations of the random variable ¥

* X € My, (R) is the matrix of n nows and p columns which contains the n olbservations

X; = (X;1, Xpp, ... X;,) of the random variables X, ..., X,

- [ z,”(Y,f(X))] is approximated with

[£(Y, f)))] Zf( F(X,, .. ip))

Aim: find a modelf: R?” — R such that
fe argmm—zbﬂ( o (X, ...Xip))

feFx n




Model selection or how to choose &7

Choosing & is challenging:
* it depends on the relationships between Y and X (linear, polynomial, etc.)

* it depends on the available training data (size n, representativeness, quality)

For a new observation (Y., X ) the error of the prediction Y, ., can be decomposed into an

\ " new? “*new "

irreducible error due to the noise and a two-terms error:

Y new Y new — f *(Xnew) + Enew f (Xnew) = Epew T T f (Xnew) o f (Xnew)

* [t F is too restive, fis =
fc:lose to f but

* [t F is too Iarge,f has a high variance (it is very sensitive to the training data) = over-fitting

f close to f* but f far from f
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Example - univariate linear regression

F = {fa,ﬁ:XHa+xﬁ}
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Example - rupture detection
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Linear regression



Univariate linear regression



Formulation

Let (Y, X));—1 , be n observations independent and identically distributed of two reals random
variables Y and X

Assumptions
Y, = X* + ¢ where the processus (g); is a white noise, namely ¢ "% e with E[¢] =0 and

Var(e) = o2

hus the space of models is F = {,B A= R}
RxXxR — R*

and to estimate * € R, we consider the quadric loss function 7 R )
.y = =)



Ordinary Least Squares

The Ordinary Least Squares (OLS) estimator minimises the quadratic error computed over the sample
(Yi Xi=1,...n"

) 1 &
BOLS € ara min Err(f)  with  Err(f) = — 2 (Y; — X,3)
pER n i

As the function Err is continuous, derivable, and convex, this minimisation problem is solved by
cancelling its derivative:

OErr(p) ()( Z?zl (Y; = Xiﬂ)z)
B op

=— ) 2X(Y, = X)) =0
=1

' XY,

=1 171

2 X7

Therefore, the Ordinary Least Squares estimator is 7" =



Fxample

X Xu-1,1) &~ o1 pr=3 n=100 O =3.08
5.0;
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Ordinary Least Squares distribution

Assumption the normality of V: V.| X. ~ A/(Xiﬁ, 02), the distribution of the ordinary least squares is

2
A 0)
ﬁOLS\Xl,...Xn~W<ﬁ, : )
2 X7

Proof:
Recalling that if Z, ~ N (uy, 67) and Z, ~ N (u,, 65) are two independent random variables that are
normally distributed then a,Z; + a,Z, ~ N (u; + pp, a’oi + a;03), we get that

. 2 XY,
ZXiYi‘XI’ X~ /V( ZXZ.XZ.IB, 022 Xl.z) and thus as p° = 25;1 =
i=1 i=1 =1 =1

2
A 0)
,BOLS\XI,...XHN,/V(,B, . )
2
zizlxi



Ordinary Least Squares distribution
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Multivariate linear regression



Formulation

Let (Y, Xy, ... Xi))iz1...., be n observations independent and identically distributed of p + 1 reals

random variables Y, X;, ...,Xp

Assumptions

Y, =X, 1f + X, + ... + X, B + €; where the processus (g,); is a white noise
Yl ﬁl* 81 Xl,l .o 'Xl,p
Using the matrix notations Y=| : |, =i |.e=]| : |and X= P X € M5, (R)
Y, By n X, X,

the design matrix the assumption can be rewritten
Y=Xp*+¢

The space of models is now 7 = {,B VAS [Rp} and we still consider the quadric loss function



Ordinary Least Squares

The Ordinary Least Squares (OLS) estimator minimises the quadratic error computed over the sample
¥y, XDi=1.....n°
~ | «
BOLS € arg min Err(f)  with  Err(f) = — Z (Y; — X,3)
pER n 1

As the function Err is continuous, derivable, and convex, this minimisation problem is solved by
cancelling its derivative:

OErr(p) 6( Z?zl (Y; — Xiﬁ)z)
B op

= — ) 2X(Y,- X;$) = 0
=1

Theretfore, the Ordinary Least Squares estimator is EOLS = (XXT)_lXTY



Fxample

1.1.d

Xy ~ U(—1,1)

Xi S u-1,1)
Xi3 S u-1,1)

E; S A(0,1)

ﬂ*z [39 _291]

n = 100
BOLS — [3.02, —2.15,1.18]




Ordinary Least Squares distribution

Assumption the normality of Y: V;| X. ~ /V(Xl-ﬂ*, 02), the distribution of the ordinary least squares is

ﬁOLS‘XN /V(ﬁ*, (XTX)_102>

Proof:

[Ao] = E|(xxT)'XTy| = E[(XXT)T'XTXB* +¢| =p*

Var(fO5) = Var((XXT)_lXTY) = (XX7) " X™VarMX(X™X)" = (X"X) 62




OLS and likelihood

The likelihood of f# given n observations (~ probability of observing these observations if they are

well distributed according to the model defined by f) in the case where the noise is Gaussian is

L Y — XPB||°
L por = eXp( u zgzﬁ” )

i=1 \/27752
Maximising the likelihood is equivalent to minimising the quatradic error ||Y — X3||* so the maximum

ikelihood estimator equals to the ordinary least squares estimator

When the data no longer respect the hypothesis ot independence or constant variance:
Y ~ /V(X,B*, Vaz) with V a positive definite matrix, the likelihood is
L 1 (Y = Xp)'V(Y — XP)
exp >
e \/ZnGZ\V\ 20

and both estimators are not equal anymore

L(X,p,0) =




Generalised linear model



Formulation

Let (Y, Xy, ... X;))iz1... ., be n observations independent and identically distributed of p + 1 reals

random variables Y, Xj, ...,Xp

Assumptions
There exists a link function g monotonic and regular (for example the identity or log functions)

relating the expected value ot Y to the predictor variables via a structure such as

g(E[Y]) = Xp*

Knowing X, observations follows an exponential distribution: there exist three functions a, b and ¢, a two
parameters ¢ and 6 such that the density ot Y| X is

0 — b0
Trix(y) = eXP(y © - c(y, ¢)>

a(¢)



Exponential family

Gaussian(u, 6°) Poisson(4) Binomiale(n, p) Gammal(a, /)
P 0

0 U lOg A log E —;
¢ c* 1 1 %

a(¢p) ¢ ¢ ¢ ¢

b(0) & expf  nlog(l + exp0) _log(—0)

c(y,0) - <y2 - log 27r¢> —log y! log (") “log — 10g<yr(i))
’ 2\ ¢ . y ¢ ¢ ¢

G-uPy  Pexp=y)  (n N
) —=ew(=2) = (D)pa-er gy e - )

Use case examples:

* Modelling electrical power consumption: Gaussian

* Modelling arrivals and departures at electric vehicle charging stations: Poisson



Likelihood and IRLS

Si la variable aléatoire Y est dans la famille exponentielle alors

(Y] =b'(0) and Var(Y) = b"(0)a(¢)

As g( —[Y]) = Xp, the likelihood ot f and the n observations (Y;, Xjy, ... X;)i=1.. 1S
LX.P) = | [fo.ci0.0 ¥
i=1

As it is then difficult to maximise the likelihood exactly, Newton's method (a numerical method with a

step for calculating the gradient and the Hessian of the log-likelihood) is used to estimate iteratively

At each iteration, we need to solve a weighted least squares problem - see Algorithm IRLS : iteratively

re-weighted least square (cf. Wood) for further details



Online approaches



Online Linear Regression

Initialisation:

. ,BAO estimated with a sample (Y,, X, ... Xip)izl,...,n

n

p
Po € argmin ||Y — XpB||* = arg min Z Y, — le- p:] and H, = X'X
peER? peER? - e ST

Fork =2,...
* Observe a new batch (Y, X;j, ... Xp))= o -1 = (Y X))

e Update the estimator ,BAk = ,BAk_l + (Hk)_ng(Yk — Xkﬁk_l) with H, = H,_; + X X,

A . k
P € argmingep, 2, . Y- X, A’
€ argming g, ZZ’;I (Y, — X,8)°
as soon as batches have equal size



Weighted Linear Regression

How to give more « importance » to recent data ?

[
,BAt € arg min Z w, (Y. — X)) with o, =pu andu€]0,1[orw, = exp( — n(t — S))
pER

s=1

As the function to minimise is continuous, derivable, and convex, this minimisation problem is solved

by cancelling its derivative:
a( Z;:l a)S(Ys o Xsﬂ)z
op
f,= (X'%) X'V with X, = wX, and ¥, = oY

S S

) — — Z 2w X (Y. — X ) =0
s=1

— New challenge: tuning u

Interpretation with an example: with u = 0.95, u*"’ ~ 3.10™ so after 200 time steps, observations

can be considered as totally forgotten



Weighted Online Linear Regression

Assumption:
For time step ) = 1,5,8;, ..., %, ..., we get access to a sample (¥, X, ... X, )., = (1, X))

which is big enough to ensure that X, X, is inversible

Initialisation:
e f, = (X,XT)”'XTY, and H, = X"X,

Fork =2,...
® Observe (Yt’ Xﬂ, co ti)t:tka°°°9tk+1_1 — (Yk’ Xk)

* Update the estimator ,BAk = ,BAk_l + (Hk)_le(Yk — Xkﬂk_l) with H, = uH,_| + X;Xk

py, € arg min Zﬂk 1Y, — X BII°
ﬁeIRP



Penalised Regression



Bias - Variance trade-oftf

The ordinary least squares method allows to estimate a model f(X) = X from a sample (Y;, X);—;

Under the linear model assumption Y = Xf™* + ¢, the estimator,BA is unbiased with minimum variance

among unbiased estimators (Gauss-Markov Theorem)

For a new set of explanatory variables X___ it is then possible to predict Y., with Y. =X _ /3

2

The quadratic error of this prediction can be decomposed into an irreducible error ¢4, a term related

A

to the variance of the estimator XneWVar(ﬁ)X and the squared bias of the estimator (ﬁ* — -(ﬂA))zz

new

= :(Ynew _ I/>new)2: — — ( newﬂ* T Epew new:ﬁ)2

o° +E ( X o (B* — ﬁ)) |

7 + Xy Var(D)XE + (5" = X E(B) ) XL,



Bias - Variance trade-off - lllustration
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity 1s varied. The light blue curves show the training error err, while the
light red curves show the conditional test error Errr for 100 training sets of size
50 each, as the model complexity 1s increased. The solid curves show the expected
test error Err and the expected training error E[erT|.

Data Mining, Inference, and

Prediction, Trevor Hastie,

Robert Tibshirani and Jerome
Friedman, Springer series in

statistics - 2001



Ridge regression



Vlotivation

Example:
e Univariate linear model: V' = X,/ + ¢

e Adding of a second explanatory variable: X, = X, + noise

] IS an unbiased estimator

E[Y] = E|(a+ DX, — aX, )| = X\ = E|(a + DX, — aX,p} — aXnoise| = X, =

of variance

X 2
Var(Y) = E [((a + DX, p; + aX,p; + aX|noise — Xlﬁl*> ] = a*fVar(noise )

-[ Y]




Motivation

Xy "~ u(-1,1)

X, =X+~ %U-=1,1)/5

l

Xo =X+~ U=1,1)/5

e, "~ W (0,1)
-1
1
~0.5
0.5
p*=1-02
0.2
0
0

i Y X1 X2 X3 X4 X5 X6 X7 X8 X9



Vlotivation

Fork=1,...,100

® Samp|e (Yp Xila Xip)i=:_,.

e Estimate 0% = (XX

—1 4
1
—0.5
0.5 o
p*=(-02
O(.)Z A
0
1

25

50

75

100



Penalisation

It the coefficients of the estimator f# are not constraints

* they may explode

* the variance of estimator may be high

ndeed, it the exp

for a variable can

anatory variables are correlated, the unicity of the solution is not obvious (a high coe

oe cancelled by a high negative coefficient on another correlated variable)

— Need to impose a constraint on the value of the coetftficients:

arg min ||Y — Xp||* with ||f||* < constant
peR?

This problem is equivalent to solve

n

p p
arg min ||Y — XB||* + 1|| || = arg min Z (Yi — ZXZ.J,BJ- + ﬂZﬁJ?)
j=1 j=1

peRP pER? "
1=

ficient



Ridge estimator distribution

As the function B — ||Y — XB||* + A||B||* is continuous, derivable, and convex so the minimisation

problem is solved by cancelling its derivative
0(\\Y—XﬁH2 +/1HﬁH2)
op

=2X'(Y — XB) + 24P
The Ridge estimator is thus

fi= (XTX+1)" XTy

This estimator is biased
‘[,BA/I] — L

And its variance satisfies

1

(XX + /IIP)_IXT(Xﬁ* + ¢

ﬁ*

=p* - A(X'X+IL))

Var(f,) = > (X™X + A1) XTX(X"X + L))"



Fxample

Ordinary Least Squares estimator

Fork=1,...,100 *
® Samp|e (Yp Xila Xip)izl,...,n 0
o Estimate B9 and pRidsek
4
1 0 25 50 75 100
1
o Ridge estimator
0.5 050
p*=|-02 2
0.2 0.25;
0
0 0.00
1 -0.25
-0.50;




Fxample

Fork=1,...,100
® Sample (Yp Xila Xip)i=1,...,n

e Estimate S5 and pRidsek

0 Ordinary Least Squares estimator

Ridge estimator

X1 X2 X3 X4 X5 X6 X7 X8 X9



Fxample

- RMSE in prediction
Fork=1,...,100 Y |
e Sample (Y;, Xiy, ... Xjp)ic1.
e Estimate f* = (XXT)” XY 0.5
0.90
For a new Sample (Ynew,i’ Xnew,iI’ s Xnew,ip)i=1,...,n |
Compute the Root Mean Squared Error (RMSE)
0.85
foreach k= 1,...,100:
n Ak 5
Z (Ynew,i — Ynew,i) Ordinary Least Squares estimator
- 0.80 | .
i=1 Ridge estimator

-0.2 0.0 0.2



| ASSO regression



Motivation and penalisation

LASSO, for Least Absolute Shrinkage and Selection Operator, regression has introduced in a variable
selection perspective and under the assumption that /™ is a sparse vector (i.e., lots of its coefficients are zero)

— Need to impose a constraint on the number of non-zero coetfticients

p
arg min ||Y — Xp||* with |||, = Z lﬁﬁéo < constant

pPER? )
J=1

But this norm is not continuous and, thus non sub derivative

Theretore, LASSO aims to solve

arg min ||Y — XB||* with ||f]|; < constant
peER?

This problem is equivalent to solve
n

P P
arg min [|¥ — Xp|1? + Al = arg min ). (Y,-— DX B+AY wj\)
j=1 j=1

peER? PER? "
=



Ridge versus LASSO - lllustration

) ‘/‘.,,' ' ’."' ‘-'_,.
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FIGURE 3.11. FEstimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |31| + |F2| < t and B + 33 < t°, respectively,
while the red ellipses are the contours of the least squares error function.

Data Mining, Inference, and

Prediction, Trevor Hastie,

Robert Tibshirani and Jerome
Friedman, Springer series in

statistics - 2001



Fxample

X "~ U(=1,1)

X '~ U(=1,1)

e, = H(0,1)

=S
%
|
SO OO0 OO~

Y X1 X2 X3 X4 X5 X6 X7 X8 X9



Fxample

Ordinary Least Squares estimator
Fork=1,...,100

® Sample (Yp Xila Xip)i=1,...,n

o Estimate 95K and plAsSOk 1

0 25 50 75 100
LASSQO estimator

0.75

0.50

=

%

|
eNeBoNoNeNeNe e

O T 2 5 ‘ 'l"'ll A
‘l i| '; '.' | .A,
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5
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Fxample

Fork =1,...,100 Ordinary Least Squares estimator
° Sample (Yl’ Xil’ Xip)i=1,...,n LASSO estimator

e Estimate BY9L5K and pLASSOX

=

%

|
eNeBoNoNeNeNe e

X1 X2 X3 X4 X5 X6 X7 X8 X9



Fxample

- RMSE in prediction

1.4

Fork=1,...,100

e Sample (Y, X, ... Xip)i=1,...,n | Ordinary Least Squares est?mator
A _1 LASSO estimator
e Estimate f* = (XX') X'Y

1.3

X X

FOI’ a new Samp|e (Yn new,il> * - new,ip)izl,,”,n

ew,1°

Compute the Root Mean Squared Error (RMSE) "4
foreach k= 1,...,100:

n

A 2
Z <Yﬁew,i o Ynew,i)

=1 1.1

-0.2 0.0 0.2



Regularisation parameter tuning



A manages the bias variance trade-off

Ridge and LASSO estimators strongly depend on 4
* Chague A donne une unigue solution

* A is the regularisation - or penalisation - parameter

Extreme behaviours:
. PRidee _ pLasso __ HOLS
e 4 =0: ,B/1 §€ = 7 = f
0
. pRidge _ pLasso _ | -
* A= oo T =0 =
0

The parameter A deals with the bias-variance trade-off:
e A=0:E [,BARidge] = -[}“”0] = [E [,BAOLS] = ™ but their variances may explode

i
0...0
. | but their bias are equal to —f*

0...0

* } > o0: Var(ﬁfidge) — Var( A/%“SSO) = [



Tuning the regularisation parameter to get the best prediction error is a « selection model » issue:

A* € arg min = (v, ) (Y—X,BA/I)Z_ with f, = (XTX+AIP)_1XTY

AERT :
— A-path: need of a training and a testing data sets, time and computational ressource consuming
1.02
1.00:
oog Y—
Error on

testing data set

090 50 100 150 200

— Cross-validation criteria



Cross-validation criteria

Vi=1,...,n
* Remove the observation (Y, X;) for the training data set
* Estimate ,BA/{’ = (XIiX_l- + /Up)_lXEY_i
e Compute the prediction error (Yl — ﬁ;’Xi )2

The cross-validation criteria is defined as
n

1 A
V() =~ (Y= X;)
=1

— n estimators to computel!

But for the Ridge regression, it is possible to prove that

] & o2 1 (V=X )’
CV(A):ZZ(YZ._Xiﬁ/1 )ZZZZ (1 - 4)2
i=1 i=1 — Ay

— the single Ridge estimator is enough!

with A; = X(XTX + A1) X7



Influence matrix and degree ot freedom

The influence matrix A is the matrix such as ¥ = AY

1

¢ OLS: A9 = X(X'X) X'

The trace Tr(AOLS) = Tr(X(XTX)_lXT) = Tr(XTX(XTX)_l) = Tr(lp) = p equals to the number of

parameters /coefficients of f to estimate and is called the degree of freedom

By analogy, for any model, the degree of freedom is the trace of its influence matrix A: df(A) = Tr(A)

2
e Ridge: AKRidge — X(XTX+ A )_IXT and df(ARidge) — Z d] with d. the sinqular values of X
ge. A o % A o d2+/1’ ] 9

j=1




Singular value decomposition

The singular value decomposition (SVD) is a factorisation of a real n X p matrix X ot the form UDV! where U
and Vare n X n and p X p orthogonal matrices and the only non-zero coefficients of the n X p matrix D are the

diagonal coefficients d; = D,; , called singular values

n

— U

110[010

0[11010 1100

0[01110 01110

0/0|0]1 0101
In IP



Generalised cross-validation criteria

We recall that for the Ridge regression

1 « 2 1 ¢ Y Xﬁz)
CV(A) = — Y. — X = —
(4) nz:21< ) ng, 1_ARldge)2
Tr(A/l)
With the approximation A, =~ , we define a generalised cross-validation criteria generally
1,1 n
used in the software packages as
N2
(v, - X,)

n -

GCV(2) = — Z
=1

(1 df(A,) ) .

n



Elastic net regression



Elastic net regression

Elastic net linear regression uses the reqularisations from both the LASSO and Ridge regression

't eliminates the following LASSO limitation:

when n < p, 59 can not have more than n non-zero coefficients (saturation)

privtienet g arg;lelg}j 1Y = XBII° + 41151, + AlIAl

or equally, with O < a < 1

st & arg min Y = XBI + 4(allpl + (1 = A1)



Online approaches

N

Ridge Regression: Recursive ridge regression using second-order stochastic algorithms.

Antoine Godichon-Baggioni, Bruno Portier, Wei Lu. Computational Statistics & Data
Analysis (2023)

LASSO Regression: An homotopy algorithm for the Lasso with online observations.

Pierre Garrigues and Laurent Ghaoui. Advances in neural information precessing
systems 21 (2008)

N




Implementation

beta ols <- 1Im(Y~ X-1)$Scoefficients

library (glmnet)

beta ridge <- glmnet (X, Y, alpha = 0, lambda = Lambda) Sbeta

beta lasso <- glmnet (X, Y, alpha = 1, lambda = Lambda) Sbeta

beta elasticnet <- glmnet (X, Y, alpha = alpha, lambda = Lambda) Sbeta

A ) = alpha, a = |1_ratio

from sklearn.linear model 1mport LinearRegression
beta ols = LinearRegression() .fi1t(X,Y) .coef

from sklearn.linear model import Ridge, Lasso, ElasticNet

beta ridge = Ridge(alpha = lambda) .fi1t(X,Y).coef

beta lasso = Lasso(alpha = lambda) .fi1t(X,Y) .coef
ElasticNet (alpha = 1lambda, 11 ratio =

beta elasticnet
alpha) . f1t (X,Y) .coef



Generalised additive models



Formulation, estimation and
implementation



Formulation

A generalised additive model (GAM) relates a random variable Y to some explanatory variables

X, X5, ... via a link function g and a structure such as

g(E[Y]) = /(X)) + Hh(X) + f5(X1, X3) + ... = ka(Xkl,sz, .2)
k

Assumptions:
* An exponential family distribution is specified for Y

® The unknown functions fi, 5, ... are smooth

— To estimate fi, /5, ..., parametric forms may be specitied



A basic univariate model

We consider a simple model

Y. =f*(X))+e¢ , fori=1,...n

where f* : R — R is an unknown function and &, L N (0,67)

Linear regression is not suitable!

Other solutions:

e Data transformation N AR

. .'2.0\‘ e .':“.,'. . . ..', s 53 ’:.‘1.’ .
e Kernel methods S e e AN
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- Splines



A basic univariate model

We introduce a basis of functions by, , ... bq and assume that

* e {f: . iﬁjbj(x)}
=1

Y, bi(Xy) = by(Xy) £
: : : |ﬂ1w :
WithY= Y|, X=|b0(X) - bX)|,p=1|:|ande=| & |, we obtain the linear
s s s P, I
Y, bi(X,) - byX,) €n

regression model formulation ¥ = X + ¢



Example: B-splines (De Boor, 1978)

Splines are tunctions defined piecewise by polynomials

With g + 1 knots 0 = xy < x; < x, < ... <x, =1, B-splines are defined on [0,1] by induction:




Example: B-splines (De Boor, 1978)
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Knot position and number
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Knot position and number
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Regression on spline basis - Penalisation

— Need to impose a constraint on the smoothness:

arg min ||Y — f(X)||* with J' f"(x)*dx < constant
peRP R

P P
As f(x) = ) Bbx) , by linearity of the differentiation f'(x) = ) fb/(x)
j=1 j=1

by (x)

herefore, J f”(x)zdx = ﬁTJ d(x)d(x)'dx f where d(x) =

R R b[;’(x)

With § the p X p-matrix such as S = J

bj”(x)bjf,’(x)dx , we get that J F(x)*dx = 'SP and the problem is
R

R

equivalent to solve, for a regularisation parameter 4 > 0

arg min ||Y — XB||* + ABLSp
peRP

~ f, = (X"X +AS)” X"y



Regularisation parameter
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Regularisation parameter
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Generalised cross-validation criteria

With A, = X(X"X + AS) " X" and f, = (X"X + 4S)” XY,

The regularisation parameter is chosen by minimising the generalised cross-validation criteria

2
v - L3 VP

i (1 Tr(;w )2




From GAM to linear regression

We recall the formulation
g( _[Y]) = H(X) + LX) + (X, X3) + ... = ka(Xklanza ..2)
k

For each k
A spline basis and a penalisation are specified
For bi/multi-variate functions:

Bivariate function basis (thin plates)

p p
Tensor product f(x;, x,) = Z 2 ,6j1,6]gbj1(x1)bjg(x2)

j=1 j=1

A constraint is added —J'fk(x)dx = 0, e.g. - to ensure the identifiability of the model

— We obtain a linear formulationfk(Xkl,XkZ, ...) = X, f, and a penalisation /lkﬁ,;rSkﬁk



From GAM to linear regression

b
With X = [X1 | X ] and f§ = ﬂ , we obtain an over-parametrised linear model formulation
k
Y=Xpf+¢
0 0 O
The penalisation terms are gathered into 'S, where S, = Z 4. 10§, O], sowe aim to solve
k 0O 0 O
argmin [|Y — XB|% + 4TS,

p
- ,BAA = (XTX + Sﬂ)_lXTY and the vector 4 is chosen to minimise the GCV criteria



Implementation

library (mgcv)

eq <- vy ~ s(x1, bs = Tcr', k =10, by = x2) +
s(x3, bs = "cc', k = 10) +
as.factor(x4) + te(x5,x0)

mod <- gam(formula = eq, data = data trailn)

summary (mod)

hat y <- predict (mod, newdata data test)

A\ not as mature as mgcv

import statsmodels.apli as sm

from stats models.gam.apili import GLMGam, BSplines

mod = GLMGam.from formula(y ~ x1, data = data train,
smoother = BSplines (data train[[‘'x2’,"'x3",'x3"]],
df = [10,10,10], degree = [3,3,3]), alpha = alpha)

.Tit ()



Online approaches



Online Generalised Additive Models

First idea: retrain all the model at each time step and eventually weight the observations

J 2
arg n}in Z a)S(YS — ka(XS,kl,XS,kz, ))
- k

s=1

Some concerns (that may be true for any complex / blackbox model):
* GAM are complex models which need lots of data to be trained so @, can not go to fast to ()
* GAM are over-parametrised linear models
— Trained to be good on all the data points (for each w, is high enough)
— |s a re-training of all the parameters necessary (interpretability, robustness)?
e Costly in terms of computing time and memory

Remark: in the mgcv R-package, bam () function updates an existing GAM with new data

* Need of model which reacts rapidly and locally



Online Generalised Additive Models

|dea:
Keep the estimated functions f,

But introduce some coefficients «, , that will be re-estimated at each time step 7 to allow the eftect

1o eVO|Ve: fl‘,k — al‘,kfk

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00



Adaptive GAM with online linear regression

Underlying assumption: Y, = Z “k,sz (X, ks Xi g5 ---) + NOISE = f(Xt)Tat + ¢
k

with a = [ék] and f(X) = []?(X)]

These coefficients can be estimated using online linear regression:

! . 2
a,,; € argmin Z a)S(YS — Z ek (X k> X ks ))
k

a
ko g=1



Adaptive GAM with Kalman filter

Underlying assumption:
Y, = f(X) a, + € where €, ~ #(0,67)
a, = a,_| + 1, where 5, ~ /V(O, 2)

Kalman filter algorithm:

A A P 1jx,. )

r = O T ~ Y, | — rT— AXt—
. ! f(Xt—l)TPt—lf(Xt—1)+52( 1 1f( 1))

P [— lf (Xr—l)]? (Xt—l)TP -1

- = -2
f(Xt—l)TPt—lf(Xt—l) + 02

P,=P,_,




Generalisation of these two approaches

Functions f, could be
Trees of a random forest

Outputs of the last layer of a neural network



Quantile regression



Vlotivation

Whereas the least squares method provides an estimate of the expectation (conditional on the

explanatory variables) ot the random variables Y, quantile regression seeks to approximate the
median or other quantiles

It is usetul for predicting thresholds

When several regressions are performed, it is possible to get a good idea ot the general distribution
of Y

Quantile regression is less sensitive to outliers (L;-loss)



Formulation

With f, the density and Fy the cumulative distribution
function ot the random variable Y, by definition, the

quantile g, satisties
9
Fy(q,) = [ fndy=P(Y<gq,) =a

With £, the pinball loss function

Cy—q=aly—ql"+(0—-a)|y—q|”

where | x| = max(x,0) and | x|~ = max(—x,0)

The quantile g, minimise the function

q = _Y[?/ﬂa(Y_ Q)]




Proot

We solve the convexe minimisation problem ¢* &€ arg min [ [fa(Y— q)] by differentiation
q

0 (Y — q)- T2 57 (y —
0 — Y —q) _ [ Ay —q) o)y
_ 0q - e 0q

q +00
=—(1 — a)[ f(y)dy + a[ J()dy
— 00 q

= (a—1)F(g) + a(l — F(g)) = a— F(qg)

Thus, the solution g* satisfies F(¢*) = a



Estimation

Let (Y}, Xy, ... X;))iz1....n be n observations independent and identically distributed of p+ 1 reals

random variables Y, X, ...,Xp, an estimator of the quantile a can be found by solving

,B“Eargmm—Zf Y Xﬁ)

peR?P N

It is possible to use a gradient descent method since the function to be is almost universally derivable

The lteratively Reweighted Least Squares algorithm (IRLS) can also be used



That's all folks!



