
Margaux Brégère

Statistical and Sequential Learning for

Time Series Forecasting

Regressions

Regression framework

Linear regression

Univariate

Multivariate

Generalised linear model

Online approaches

Penalised Regression

Ridge regression

Lasso regression

Regularisation parameter tuning

Elastic Net

Online approaches and implementation

Generalised Additives Models

Formulation, estimation and implementation

Online approaches

Quantile regression

Regression framework

Setting
Regression covers several statistical analysis methods used to approximate a random variable with

a set of other random variables which are correlated to it; they are called explicative

variables or features and gathered in a random vector

Y
X1, X2, …, Xp

X

Assumption

The regression model links the quantity of interest with the -dimensional vector

 by assuming that, for any realisation ,

where is an unknown function and

Y ∈ ℝ p
X ∈ ℝp (Yi, Xi)

i.i.d∼ (X, Y)
Yi = f ⋆(Xi) + εi

f ⋆ : ℝp → ℝ εi
i.i.d∼ 𝒩(0,σ2)

Aim:

Finding a model as close as possible to in oder to forecast any new realisation

of based on the observation of with

̂f : ℝp → ℝ f ⋆ Ynew

Y Xnew
̂Ynew = ̂f(Xnew)

Setting

To estimate , we introduce

 • a loss function (quadratic, etc.)

 • a space of functions in which the model is sought

The objective is to solve the following minimisation problem:

To solve this minimisation problem, the expectation of the prediction error has to be approximated

using a training data set

f ⋆

ℓ : ℝ × ℝ → ℝ+

ℱ

f̃ ∈ arg min
f∈ℱ

𝔼(Y, X)[ℓ(Y, f(X))]

What about data?
 is approximated on the basis of a sample of observations

Rating abuse:

• is the -size vector of the observations of the random variable

• is the matrix of nows and columns which contains the observations

 of the random variables

is approximated with

Aim: find a model such that

𝔼[ℓ(Y, f(X))] (Yi, Xi1, …, Xip)i=1, …n

Y = (Y1, Y2, …Yn) n Y
X ∈ ℳn×p(ℝ) n p n

Xi = (Xi1, Xi2, …Xip) X1, …, Xp

𝔼[ℓ(Y, f(X))]
𝔼[ℓ(Y, f(X))] ≈

1
n

n

∑
i=1

ℓ(Yi, f (Xi1, …Xip))
̂f : ℝp → ℝ

̂f ∈ arg min
f∈ℱ

1
n

n

∑
i=1

ℓ(Yi, f (Xi1, …Xip))

Model selection or how to choose ?ℱ
Choosing is challenging:

• it depends on the relationships between and (linear, polynomial, etc.)

• it depends on the available training data (size , representativeness, quality)

For a new observation , the error of the prediction can be decomposed into an

irreducible error due to the noise and a two-terms error:

 + +

• If is too restive, is biased = under-fitting / over-smoothing

 close to but far from

• If is too large, has a high variance (it is very sensitive to the training data) = over-fitting

 close to but far from

ℱ
Y X

n

(Ynew, Xnew) ̂Ynew

Ynew − ̂Ynew = f ⋆(Xnew) + εnew − ̂f(Xnew) = εnew f ⋆(Xnew) − f̃(Xnew) f̃(Xnew) − ̂f(Xnew)

ℱ ̂f
̂f f̃ f̃ f ⋆

ℱ ̂f
f̃ f ⋆ ̂f f̃

Example - univariate linear regression

ℱ = {fα,β : x ↦ α + xβ}

Example - rupture detection

ℱ = {fx0,a0,…,xK,aK
: x ↦

K

∑
k=1

ak1xk−1≤x<xk
(x)}

Linear regression

Univariate linear regression

Formulation

Let be observations independent and identically distributed of two reals random
variables and

Assumptions

 where the processus is a white noise, namely with and

Thus the space of models is =

and to estimate , we consider the quadric loss function

(Yi, Xi)i=1,…,n n
Y X

Yi = Xiβ⋆ + εi (εi)i εi
i.i.d∼ ε 𝔼[ε] = 0

Var(ε) = σ2

ℱ {β |β ∈ ℝ}
β⋆ ∈ ℝ ℓ :

ℝ × ℝ → ℝ+

(y, ̂y) ↦ (y − ̂y)2

Ordinary Least Squares

The Ordinary Least Squares (OLS) estimator minimises the quadratic error computed over the sample
:

 with

As the function is continuous, derivable, and convex, this minimisation problem is solved by
cancelling its derivative:

Therefore, the Ordinary Least Squares estimator is

(Yi, Xi)i=1,…,n

̂βOLS ∈ arg min
β∈ℝ

Err(β) Err(β) =
1
n

n

∑
i=1

(Yi − Xiβ)2

Err

∂Err(β)
∂β

=
∂(∑n

i=1 (Yi − Xiβ)2)
∂β

= −
n

∑
i=1

2Xi(Yi − Xiβ) = 0

̂βOLS =
∑n

i=1 XiYi

∑n
i=1 X2

i

Example
 Xi

i.i.d∼ 𝒰(−1,1) εi
i.i.d∼ 𝒩(0,1) β⋆ = 3 n = 100 ̂βOLS = 3.08

Ordinary Least Squares distribution
Assumption the normality of : , the distribution of the ordinary least squares is

Proof:

Recalling that if and are two independent random variables that are

normally distributed then , we get that

 and thus as ,

Y Yi |Xi ∼ 𝒩(Xiβ, σ2)
̂βOLS |X1, …Xn ∼ 𝒩(β,

σ2

∑n
i=1 X2

i
)

Z1 ∼ 𝒩(μ1, σ2
1) Z2 ∼ 𝒩(μ2, σ2

2)

a1Z1 + a2Z2 ∼ 𝒩(μ1 + μ2, a2
1σ2

1 + a2
2σ2

2)
n

∑
i=1

XiYi |X1, …Xn ∼ 𝒩(
n

∑
i=1

XiXiβ, σ2
n

∑
i=1

X2
i) ̂βOLS =

∑n
i=1 XiYi

∑n
i=1 X2

i

̂βOLS |X1, …Xn ∼ 𝒩(β,
σ2

∑n
i=1 X2

i
)

Ordinary Least Squares distribution

Multivariate linear regression

Formulation
Let be observations independent and identically distributed of reals
random variables

Assumptions

 where the processus is a white noise

Using the matrix notations , , and

the design matrix the assumption can be rewritten

The space of models is now = and we still consider the quadric loss function

(Yi, Xi1, … Xip)i=1,…,n n p + 1
Y, X1, …, Xp

Yi = Xi,1β⋆
1 + Xi,2β⋆

2 + … + Xi,pβ⋆
p + εi (εi)i

Y =
Y1
⋮
Yn

β⋆ =
β⋆

1
⋮

β⋆
p

ε =
ε1
⋮
εn

X =

X1,1…X1,p

⋮ Xi,j ⋮
Xn,1…Xn,p

∈ ℳn×p(ℝ)

Y = Xβ⋆ + ε
ℱ {β |β ∈ ℝp}

Ordinary Least Squares

The Ordinary Least Squares (OLS) estimator minimises the quadratic error computed over the sample
:

 with

As the function is continuous, derivable, and convex, this minimisation problem is solved by
cancelling its derivative:

Therefore, the Ordinary Least Squares estimator is

(Yi, Xi)i=1,…,n

̂βOLS ∈ arg min
β∈ℝ

Err(β) Err(β) =
1
n

n

∑
i=1

(Yi − Xiβ)2

Err

∂Err(β)
∂β

=
∂(∑n

i=1 (Yi − Xiβ)2)
∂β

= −
n

∑
i=1

2XT
i (Yi − Xiβ) = 0

̂β OLS = (XXT)−1XTY

Example

Xi1
i.i.d∼ 𝒰(−1,1)

Xi2
i.i.d∼ 𝒰(−1,1)

Xi3
i.i.d∼ 𝒰(−1,1)

εi
i.i.d∼ 𝒩(0,1)

β⋆ = [3, − 2, 1]
n = 100

̂βOLS = [3.02, − 2.15, 1.18]

Ordinary Least Squares distribution

Assumption the normality of : , the distribution of the ordinary least squares is

Proof:

◻︎

Y Yi |Xi ∼ 𝒩(Xiβ⋆, σ2)
̂βOLS |X ∼ 𝒩(β⋆, (XTX)−1σ2)

𝔼[̂β OLS] = 𝔼[(XXT)−1XTY] = 𝔼[(XXT)−1XTXβ⋆ + ε] = β⋆

Var(̂β OLS) = Var((XXT)−1XTY) = (XXT)−1XTVar(Y)X(XTX)−1 = (XTX)−1σ2

OLS and likelihood
The likelihood of given observations (probability of observing these observations if they are

well distributed according to the model defined by) in the case where the noise is Gaussian is

Maximising the likelihood is equivalent to minimising the quatradic error so the maximum

likelihood estimator equals to the ordinary least squares estimator

When the data no longer respect the hypothesis of independence or constant variance:

 with a positive definite matrix, the likelihood is

and both estimators are not equal anymore

β n ∼
β

L(X, β, σ) =
n

∏
i=1

1

2πσ2
exp(−

∥Y − Xβ∥2

2σ2)
∥Y − Xβ∥2

Y ∼ 𝒩(Xβ⋆, Vσ2) V

L(X, β, σ) =
n

∏
i=1

1
2πσ2 |V |

exp(−
(Y − Xβ)TV(Y − Xβ)

2σ2)

Generalised linear model

Formulation

Let be observations independent and identically distributed of reals
random variables

Assumptions

There exists a link function monotonic and regular (for example the identity or log functions)

relating the expected value of Y to the predictor variables via a structure such as

Knowing , observations follows an exponential distribution: there exist three functions , and , a two
parameters and such that the density of is

(Yi, Xi1, … Xip)i=1,…,n n p + 1
Y, X1, …, Xp

g

g(𝔼[Y]) = Xβ⋆

X a b c
ϕ θ Y | X

fY|X(y) = exp(yθ − b(θ)
a(ϕ)

+ c(y, ϕ))

Exponential family

Use case examples:

• Modelling electrical power consumption: Gaussian

• Modelling arrivals and departures at electric vehicle charging stations: Poisson

Gaussian(μ, σ2) Poisson(λ) Binomiale(n, p) Gamma(α, β)
θ μ log λ log p

1 − p − α
β

ϕ σ2 1 1 1
α

a(ϕ) ϕ ϕ ϕ ϕ

b(θ) θ2

2 exp θ n log(1 + exp θ) −log(−θ)

c(y, θ) 1
2 (y2

ϕ + log 2πϕ) −log y! log (n
y) 1

ϕ log y
ϕ − log(yΓ(1

ϕ))
f(y) 1

σ 2π
exp(− (y − μ)2

2σ2) λy exp(−y)
y! (n

y) py(1 − p)n−y βα

Γ(α) yα−1 exp(− βy)

Likelihood and IRLS

Si la variable aléatoire est dans la famille exponentielle alors

 and

As , the likelihood of and the observations is

As it is then difficult to maximise the likelihood exactly, Newton's method (a numerical method with a

step for calculating the gradient and the Hessian of the log-likelihood) is used to estimate iteratively

At each iteration, we need to solve a weighted least squares problem - see Algorithm IRLS : iteratively
re-weighted least square (cf. Wood) for further details

Y
𝔼[Y] = b′￼(θ) Var(Y) = b′￼′￼(θ)a(ϕ)

g(𝔼[Y]) = Xβ β n (Yi, Xi1, … Xip)i=1,…,n

L(X, β) =
n

∏
i=1

fai,bi,ci,θi,ϕi
(Yi)

β

Online approaches

Online Linear Regression
Initialisation:

• estimated with a sample

 and

For

• Observe a new batch

• Update the estimator with

 as soon as batches have equal size

̂β0 (Yi, Xi1, … Xip)i=1,…,n

̂β0 ∈ arg min
β∈ℝp

∥Y − Xβ∥2 = arg min
β∈ℝp

n

∑
i=1

(Yi −
p

∑
j=1

xi,jβj) H1 = XTX

k = 2,…
(Yt, Xt1, … Xtp)t=tk,…,tk+1−1 = (Yk, Xk)

̂βk = ̂βk−1 + (Hk)−1XT
k (Yk − Xkβk−1) Hk = Hk−1 + XT

k Xk

̂βk ∈ arg minβ∈ℝp ∑k
l=1 ∥Yk − Xkβ∥2

∈ arg minβ∈ℝp ∑tk
s=1 (Yi − Xiβ)2

Weighted Linear Regression
How to give more « importance » to recent data ?

 with and or

As the function to minimise is continuous, derivable, and convex, this minimisation problem is solved
by cancelling its derivative:

 with and

 New challenge: tuning

Interpretation with an example: with so after 200 time steps, observations

can be considered as totally forgotten

̂βt ∈ arg min
β∈ℝ

t

∑
s=1

ωs (Ys − Xsβ)2 ωs = μt−s μ ∈] 0,1 [ωs = exp(− η(t − s))

∂(∑t
s=1 ωs(Ys − Xsβ)2)

∂β
= −

t

∑
s=1

2ωsXT
s (Ys − Xsβ) = 0

̂β t = (X̃TX̃)−1X̃TỸ X̃sj = ωsXsj Ỹs = ωsYs

→ μ
μ = 0.95, μ200 ≈ 3.10−5

Weighted Online Linear Regression
Assumption:

For time step , we get access to a sample

which is big enough to ensure that is inversible

Initialisation:

• and

For

• Observe

• Update the estimator with

t1 = 1, t2, t3, …, tk, … (Yt, Xt1, … Xtp)t=tk,…,tk+1−1 = (Yk, Xk)
XT

k Xk

̂β1 = (X1XT
1)−1XT

1 Y1 H1 = XT
1 X1

k = 2,…
(Yt, Xt1, … Xtp)t=tk,…,tk+1−1 = (Yk, Xk)

̂βk = ̂βk−1 + (Hk)−1XT
k (Yk − Xkβk−1) Hk = μHk−1 + XT

k Xk

̂βk ∈ arg min
β∈ℝp

k

∑
l=1

μk−l∥Yk − Xkβ∥2

Penalised Regression

Bias - Variance trade-off
The ordinary least squares method allows to estimate a model from a sample

Under the linear model assumption , the estimator is unbiased with minimum variance

among unbiased estimators (Gauss-Markov Theorem)

For a new set of explanatory variables it is then possible to predict with

The quadratic error of this prediction can be decomposed into an irreducible error , a term related

to the variance of the estimator and the squared bias of the estimator :

̂f(X) = X ̂β (Yi, Xi)i=1,…,n

Y = Xβ⋆ + ε ̂β

Xnew Ynew
̂Ynew = Xnew

̂β
σ2

XnewVar(̂β)Xnew (β⋆ − 𝔼(̂β))2

𝔼[(Ynew − ̂Ynew)2] = 𝔼[(Xnewβ⋆ + εnew − Xnew
̂β)2]

= σ2 + 𝔼[(Xnew(β⋆ − ̂β))2]
= σ2 + XnewVar(̂β)XT

new + (β⋆ − Xnew𝔼(̂β))
2
XT

new

Bias - Variance trade-off - Illustration

Data Mining, Inference, and

Prediction, Trevor Hastie,

Robert Tibshirani and Jerome

Friedman, Springer series in

statistics - 2001

Ridge regression

Motivation
Example:

 • Univariate linear model:

 • Adding of a second explanatory variable:

 is an unbiased estimator

of variance

Y = X1β⋆
1 + ε

X2 = X1 + noise

∀a ∈ ℝ, βa = [(a + 1)β⋆
1

−aβ⋆
1]

𝔼[̂Y] = 𝔼[(a + 1)X1β⋆
1 − aX2β⋆

1] = X1β⋆
1 = 𝔼[(a + 1)X1β⋆

1 − aX1β⋆
1 − aX1noise] = X1β⋆

1 = 𝔼[Y]

Var(̂Y) = 𝔼[((a + 1)X1β⋆
1 + aX1β⋆

1 + aX1noise − X1β⋆
1)

2

] = a2β2
1Var(noise)

Motivation

Xi1
i.i.d∼ 𝒰(−1,1)

Xi2 = X1 + i.i.d∼ 𝒰(−1,1)/5

…

Xi9 = X1 + i.i.d∼ 𝒰(−1,1)/5

εi
i.i.d∼ 𝒩(0,1)

β⋆ =

−1
1

−0.5
0.5

−0.2
0.2
0
0
1

Motivation

β⋆ =

−1
1

−0.5
0.5

−0.2
0.2
0
0
1

For

• Sample

• Estimate

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k = (XXT)−1XTY

Penalisation
If the coefficients of the estimator are not constraints

 • they may explode

 • the variance of estimator may be high

Indeed, if the explanatory variables are correlated, the unicity of the solution is not obvious (a high coefficient

for a variable can be cancelled by a high negative coefficient on another correlated variable)

→ Need to impose a constraint on the value of the coefficients:

This problem is equivalent to solve

β

arg min
β∈ℝp

∥Y − Xβ∥2 with ∥β∥2 ≤ constant

arg min
β∈ℝp

∥Y − Xβ∥2 + λ∥β∥2 = arg min
β∈ℝp

n

∑
i=1

(Yi −
p

∑
j=1

Xi,jβj + λ
p

∑
j=1

β2
j)

Ridge estimator distribution
As the function is continuous, derivable, and convex so the minimisation

problem is solved by cancelling its derivative

The Ridge estimator is thus

This estimator is biased

And its variance satisfies

β ↦ ∥Y − Xβ∥2 + λ∥β∥2

∂(∥Y − Xβ∥2 + λ∥β∥2)
∂β

= 2XT(Y − Xβ) + 2λβ

̂βλ = (XTX + λIp)−1XTY

𝔼[̂βλ] = 𝔼[(XTX + λIp)−1XT(Xβ⋆ + ε)] = β⋆ − λ(XTX + λIp)−1β⋆

Var(̂βλ) = σ2(XTX + λIp)−1XTX(XTX + λIp)−1

Example

β⋆ =

−1
1

−0.5
0.5

−0.2
0.2
0
0
1

For

• Sample

• Estimate and

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k ̂β Ridge,k

Ordinary Least Squares estimator

Ridge estimator

Example

β⋆ =

−1
1

−0.5
0.5

−0.2
0.2
0
0
1

For

• Sample

• Estimate and

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k ̂β Ridge,k

Ordinary Least Squares estimator

Ridge estimator

Example

For

• Sample

• Estimate  

For a new sample

Compute the Root Mean Squared Error (RMSE)

for each :

k = 1,…,100

(Yi, Xi1, … Xip)i=1,…,n

̂β k = (XXT)−1XTY

(Ynew,i, Xnew,i1, … Xnew,ip)i=1,…,n

k = 1,…,100
n

∑
i=1

(̂Yk
new,i − Ynew,i)2

Ordinary Least Squares estimator

Ridge estimator

RMSE in prediction

LASSO regression

Motivation and penalisation
LASSO, for Least Absolute Shrinkage and Selection Operator, regression has introduced in a variable
selection perspective and under the assumption that is a sparse vector (i.e., lots of its coefficients are zero)

→ Need to impose a constraint on the number of non-zero coefficients

But this norm is not continuous and, thus non sub derivative

Therefore, LASSO aims to solve

with

This problem is equivalent to solve

β⋆

arg min
β∈ℝp

∥Y − Xβ∥2 with ∥β∥0 =
p

∑
j=1

1βj≠0 ≤ constant

arg min
β∈ℝp

∥Y − Xβ∥2 ∥β∥1 ≤ constant

arg min
β∈ℝp

∥Y − Xβ∥2 + λ∥β∥1 = arg min
β∈ℝp

n

∑
i=1

(Yi −
p

∑
j=1

Xi,jβj + λ
p

∑
j=1

|βj |)

Ridge versus LASSO - Illustration

Data Mining, Inference, and

Prediction, Trevor Hastie,

Robert Tibshirani and Jerome

Friedman, Springer series in

statistics - 2001

Example

Xi1
i.i.d∼ 𝒰(−1,1)

…

Xi9
i.i.d∼ 𝒰(−1,1)

εi
i.i.d∼ 𝒩(0,1)

β⋆ =

1
0
0
0
0
0
0
0
0

Example
For

• Sample

• Estimate and

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k ̂β LASSO,k

Ordinary Least Squares estimator

LASSO estimator

β⋆ =

1
0
0
0
0
0
0
0
0

Example
For

• Sample

• Estimate and

k = 1,…,100
(Yi, Xi1, … Xip)i=1,…,n

̂β OLS,k ̂β LASSO,k

Ordinary Least Squares estimator

LASSO estimator

β⋆ =

1
0
0
0
0
0
0
0
0

Example

For

• Sample

• Estimate  

For a new sample

Compute the Root Mean Squared Error (RMSE)

for each :

k = 1,…,100

(Yi, Xi1, … Xip)i=1,…,n

̂β k = (XXT)−1XTY

(Ynew,i, Xnew,i1, … Xnew,ip)i=1,…,n

k = 1,…,100
n

∑
i=1

(̂Yk
new,i − Ynew,i)2

Ordinary Least Squares estimator

LASSO estimator

RMSE in prediction

Regularisation parameter tuning

 manages the bias variance trade-offλ
Ridge and LASSO estimators strongly depend on

 • Chaque donne une unique solution

 • is the regularisation - or penalisation - parameter

Extreme behaviours:

 • :

 • :

The parameter deals with the bias-variance trade-off:

 • : but their variances may explode

 • : but their bias are equal to

λ
λ

λ

λ = 0 ̂βRidge
λ = ̂βLasso

λ = ̂βOLS

λ → ∞ ̂βRidge
λ = ̂βLasso

λ =
0
⋮
0

λ
λ = 0 𝔼[̂βRidge

λ] = 𝔼[̂βLasso
λ] = 𝔼[̂βOLS] = β⋆

λ → ∞ Var(̂βRidge
λ) = Var(̂βLasso

λ) = [
0…0

⋱
0…0] −β⋆

Tuning
Tuning the regularisation parameter to get the best prediction error is a « selection model » issue:

 with

 -path: need of a training and a testing data sets, time and computational ressource consuming

 Cross-validation criteria

λ⋆ ∈ arg min
λ∈ℝ+

𝔼(Y, X)[(Y − X ̂βλ)2] ̂βλ = (XTX + λIp)−1XTY

→ λ

→

Error on training data set

testing data set

λ⋆

Cross-validation criteria

 • Remove the observation for the training data set

 • Estimate

 • Compute the prediction error

The cross-validation criteria is defined as

 estimators to compute!

But for the Ridge regression, it is possible to prove that

 with

 the single Ridge estimator is enough!

∀i = 1,…, n
(Yi, Xi)

̂β−i
λ = (XT

−iX−i + λIp)−1XT
−iY−i

(Yi − ̂β−i
λ Xi)2

CV(λ) =
1
n

n

∑
i=1

(Yi − Xi
̂β−i
λ)2

→ n

CV(λ) =
1
n

n

∑
i=1

(Yi − Xi
̂β−i
λ)2 =

1
n

n

∑
i=1

(Yi − Xi
̂βλ)2

(1 − Aλi,i)
2 Aλ = X(XTX + λIp)−1XT

→

Influence matrix and degree of freedom

The influence matrix is the matrix such as

 • OLS:

The trace equals to the number of

parameters /coefficients of to estimate and is called the degree of freedom

By analogy, for any model, the degree of freedom is the trace of its influence matrix :

 • Ridge: and , with the singular values of

A ̂Y = AY

AOLS = X(XTX)−1XT

Tr(AOLS) = Tr(X(XTX)−1XT) = Tr(XTX(XTX)−1) = Tr(Ip) = p

β

A df(A) = Tr(A)

ARidge
λ = X(XTX + λIp)−1XT df(ARidge

λ) =
p

∑
j=1

d2
j

d2
j + λ

dj X

Singular value decomposition
The singular value decomposition (SVD) is a factorisation of a real matrix of the form where
and are and orthogonal matrices and the only non-zero coefficients of the matrix are the
diagonal coefficients , called singular values

n × p X UDVT U
V n × n p × p n × p D

dj = Djj

p

n

X =

0 0
0 0
0 0
0 0 0

D

n

p

n

U

n

VT

p

p

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U UT = In

1 0 0
0 1 0
0 0 1

VT V = Ip

Generalised cross-validation criteria
We recall that for the Ridge regression

With the approximation , we define a generalised cross-validation criteria generally

used in the software packages as

CV(λ) =
1
n

n

∑
i=1

(Yi − Xi
̂β−i
λ)2 =

1
n

n

∑
i=1

(Yi − Xi
̂βλ)2

(1 − ARidge
λi,i)2

Aλi,i
≈

Tr(Aλ)
n

GCV(λ) =
1
n

n

∑
i=1

(Yi − Xi
̂βλ)

2

(1 −
df(Aλ)

n)
2

Elastic net regression

Elastic net regression
Elastic net linear regression uses the regularisations from both the LASSO and Ridge regression

It eliminates the following LASSO limitation:

when , can not have more than non-zero coefficients (saturation)

or equally, with

n < p ̂βLASSO n

̂βElastic.net ∈ arg min
β∈ℝp

∥Y − Xβ∥2 + λ1∥β∥1 + λ2∥β∥2
2

0 ≤ α ≤ 1

̂βElastic.net ∈ arg min
β∈ℝp

∥Y − Xβ∥2 + λ(α∥β∥1 + (1 − α)∥β∥2
2)

Online approaches

Ridge Regression: Recursive ridge regression using second-order stochastic algorithms.
Antoine Godichon-Baggioni, Bruno Portier, Wei Lu. Computational Statistics & Data
Analysis (2023)

LASSO Regression: An homotopy algorithm for the Lasso with online observations.
Pierre Garrigues and Laurent Ghaoui. Advances in neural information precessing
systems 21 (2008)

Implementation
beta_ols <- lm(Y~ X-1)$coefficients

library(glmnet)

beta_ridge <- glmnet(X, Y, alpha = 0, lambda = Lambda)$beta

beta_lasso <- glmnet(X, Y, alpha = 1, lambda = Lambda)$beta

beta_elasticnet <- glmnet(X, Y, alpha = alpha, lambda = Lambda)$beta

⚠︎ = alpha, = l1_ratio

from sklearn.linear_model import LinearRegression

beta_ols = LinearRegression().fit(X,Y).coef_

from sklearn.linear_model import Ridge, Lasso, ElasticNet

beta_ridge = Ridge(alpha = lambda).fit(X,Y).coef_

beta_lasso = Lasso(alpha = lambda).fit(X,Y).coef_

beta_elasticnet = ElasticNet(alpha = lambda, l1_ratio =
alpha).fit(X,Y).coef_

λ α

Generalised additive models

Formulation, estimation and

implementation

Formulation

A generalised additive model (GAM) relates a random variable to some explanatory variables
 via a link function and a structure such as

Assumptions:

• An exponential family distribution is specified for

• The unknown functions are smooth

 To estimate , parametric forms may be specified

Y
X1, X2, … g

g(𝔼[Y]) = f1(X1) + f2(X2) + f3(X1, X3) + … = ∑
k

fk (Xk1
, Xk2

, …)

Y
f1, f2, …

→ f1, f2, …

A basic univariate model
We consider a simple model

 , for

where is an unknown function and

Linear regression is not suitable!

Other solutions:

• Data transformation

• Kernel methods

• k-nearest neighbours

• Regression on a basis of functions

- Fourier functions (for periodic functions)

- Wavelets

- Splines

Yi = f ⋆(Xi) + εi i = 1,…n

f ⋆ : ℝ → ℝ εi
i.i.d∼ 𝒩(0,σ2)

A basic univariate model
We introduce a basis of functions and assume that

With , , and , we obtain the linear

regression model formulation

b1, , …bq

f ⋆ ∈ {f : x ↦
p

∑
j=1

βjbj(x)}

Y =

Y1
⋮
Yi
⋮
Yn

X =

b1(X1) ⋯ bp(X1)
⋮ ⋮

b1(Xi) ⋯ bp(Xi)
⋮ ⋮

b1(Xn) ⋯ bp(Xn)

β =
β1
⋮
βp

ε =

ε1
⋮
εi
⋮
εn

Y = Xβ + ε

Example: B-splines (De Boor, 1978)

Splines are functions defined piecewise by polynomials

With knots , B-splines are defined on by induction:

For

q + 1 0 = x0 < x1 < x2 < … < xq = 1 [0,1]

∀j = 1,…, q : bj,0(x) =
1 if xj−1 < x < xj

0 else

d = 1,…

bj,d(x) =
x − xj−1

xj−1+p − xj−1
bj−1,d−1(x) +

xj+p − x
xj+p − xj

bj,d−1(x)

Example: B-splines (De Boor, 1978)

d = 1 d = 2 d = 3

Knot position and number

Knot position and number

q = 2
q = 20
q = 200

Over-fitting

Over-smoothing

Regression on spline basis - Penalisation
→ Need to impose a constraint on the smoothness:

As , by linearity of the differentiation

Therefore, where

With the -matrix such as , we get that and the problem is

equivalent to solve, for a regularisation parameter

→

arg min
β∈ℝp

∥Y − f(X)∥2 with ∫ℝ
f′￼′￼(x)2dx ≤ constant

f(x) =
p

∑
j=1

βjbj(x) f′￼′￼(x) =
p

∑
j=1

βjb′￼′￼j (x)

∫ℝ
f′￼′￼(x)2dx = βT ∫ℝ

d(x)d(x)Tdx β d(x) =
b′￼′￼1(x)

⋮
b′￼′￼p(x)

S p × p Sjj′￼
= ∫ℝ

b′￼′￼j (x)b′￼′￼j′￼
(x)dx ∫ℝ

f′￼′￼(x)2dx = βTSβ

λ > 0
arg min

β∈ℝp
∥Y − Xβ∥2 + λβTSβ

̂βλ = (XTX + λS)−1XTY

Regularisation parameter

Regularisation parameter

λ = 0.1
λ = 0.01
λ = 0

Over-smoothing

Over-fitting

Generalised cross-validation criteria

With and ,

The regularisation parameter is chosen by minimising the generalised cross-validation criteria

Aλ = X(XTX + λS)−1XT ̂βλ = (XTX + λS)−1XTY

GCV(λ) =
1
n

n

∑
i=1

(Yi − ̂βλXi)
2

(1 −
Tr(Aλ)

n)
2

From GAM to linear regression
We recall the formulation

For each

A spline basis and a penalisation are specified

For bi/multi-variate functions:

Bivariate function basis (thin plates)

Tensor product

A constraint is added - , e.g. - to ensure the identifiability of the model

 We obtain a linear formulation and a penalisation

g(𝔼[Y]) = f1(X1) + f2(X2) + f3(X1, X3) + … = ∑
k

fk (Xk1
, Xk2

, …)

k

f(x1, x2) =
p

∑
j=1

p′￼

∑
j′￼=1

β1
j β2

j′￼
b1

j (x1)b2
j′￼
(x2)

∫ fk(x)dx = 0

→ fk (Xk1
, Xk2

, …) = Xkβk λkβT
k Skβk

From GAM to linear regression

With and , we obtain an over-parametrised linear model formulation

The penalisation terms are gathered into where , so we aim to solve

→ and the vector is chosen to minimise the GCV criteria

X = [X1 |… |Xk |…] β =

β1
⋮
βk
⋮

Y = Xβ + ε

βTSλβ Sλ = ∑
k

λk

0 0 0
0 Sk 0
0 0 0

arg min
β

∥Y − Xβ∥2 + βTSλβ

̂βλ = (XTX + Sλ)−1XTY λ

Implementation
library(mgcv)

eq <- y ~ s(x1, bs = 'cr', k = 10, by = x2) +

 s(x3, bs = 'cc', k = 10) +

 as.factor(x4) + te(x5,x6)

mod <- gam(formula = eq, data = data_train)

summary(mod)

hat_y <- predict(mod, newdata = data_test)

⚠︎ not as mature as mgcv

import statsmodels.api as sm

from stats models.gam.api import GLMGam, BSplines

mod = GLMGam.from_formula(y ~ x1, data = data_train,

 smoother = BSplines(data_train[[‘x2’,’x3’,’x3’]],

 df = [10,10,10], degree = [3,3,3]), alpha = alpha).fit()

Online approaches

Online Generalised Additive Models
First idea: retrain all the model at each time step and eventually weight the observations

Some concerns (that may be true for any complex / blackbox model):

 • GAM are complex models which need lots of data to be trained so can not go to fast to

 • GAM are over-parametrised linear models

 Trained to be good on all the data points (for each is high enough)

 Is a re-training of all the parameters necessary (interpretability, robustness)?

 • Costly in terms of computing time and memory

 Remark: in the mgcv R-package, bam() function updates an existing GAM with new data

 • Need of model which reacts rapidly and locally

arg min
fk

t

∑
s=1

ωs(Ys − ∑
k

fk (Xs,k1
, Xs,k2

, …))
2

ωt 0

→ ωt

→

Online Generalised Additive Models
Idea:

Keep the estimated functions

But introduce some coefficients that will be re-estimated at each time step to allow the effect

to evolve:

̂fk

αt,k t
̂ft,k = αt,k

̂fk

̂fk αk
̂fk

Adaptive GAM with online linear regression

Underlying assumption:

with and

These coefficients can be estimated using online linear regression:

Yt = ∑
k

αk,t
̂fk (Xt,k1

, Xt,k2
, …) + noise = ̂f(Xt)Tαt + εt

α =
⋮
αk
⋮

̂f(X) =
⋮
̂f(X)
⋮

α̂t+1 ∈ arg min
αk

t

∑
s=1

ωs(Ys − ∑
k

αk
̂fk (Xs,k1

, Xs,k2
, …))

2

Adaptive GAM with Kalman filter
Underlying assumption:

 where

 where

Kalman filter algorithm:

Yt = ̂f(Xt)Tαt + εt εt ∼ 𝒩(0,σ2)
αt = αt−1 + ηt ηt ∼ 𝒩(0, Σ)

α̂t = α̂t−1 +
Pt−1 ̂f(Xt−1)

̂f(Xt−1)TPt−1
̂f(Xt−1) + σ2 (Yt−1 − αT

t−1
̂f(Xt−1))

Pt = Pt−1 −
Pt−1

̂f(Xt−1) ̂f(Xt−1)TPt−1
̂f(Xt−1)TPt−1

̂f(Xt−1) + σ2
+ Σ

Generalisation of these two approaches

Functions could be

Trees of a random forest

Outputs of the last layer of a neural network

…

fk

Quantile regression

Motivation
Whereas the least squares method provides an estimate of the expectation (conditional on the

explanatory variables) of the random variables , quantile regression seeks to approximate the

median or other quantiles

It is useful for predicting thresholds

When several regressions are performed, it is possible to get a good idea of the general distribution

of

Quantile regression is less sensitive to outliers (-loss)

Y

Y

L1

Formulation
With the density and the cumulative distribution

function of the random variable , by definition, the

quantile satisfies

With the pinball loss function

where and

The quantile minimise the function

fY FY

Y
qα

FY (qα) = ∫
qα

−∞
fY(y)dy = ℙ(Y ≤ qα) = α

ℓα

ℓα(y − q) = α |y − q |+ + (1 − α) |y − q |−

|x |+ = max(x,0) |x |− = max(−x,0)

qα

q ↦ 𝔼Y[ℓα(Y − q)]

α1 − α

Proof
We solve the convexe minimisation problem by differentiation

Thus, the solution satisfies

q⋆ ∈ arg min
q

𝔼[ℓα(Y − q)]

0 = 𝔼[∂ℓα(Y − q)
∂q] = ∫

+∞

−∞

∂ℓα(y − q)
∂q

f(y)dy

= − (1 − α)∫
q

−∞
f(y)dy + α∫

+∞

q
f(y)dy

= (α − 1)F(q) + α(1 − F(q)) = α − F(q)

q⋆ F(q⋆) = α

Estimation
Let be observations independent and identically distributed of reals

random variables , an estimator of the quantile can be found by solving

It is possible to use a gradient descent method since the function to be is almost universally derivable

The Iteratively Reweighted Least Squares algorithm (IRLS) can also be used

(Yi, Xi1, … Xip)i=1,…,n n p + 1

Y, X1, …, Xp α

̂β α ∈ arg min
β∈ℝp

1
n

n

∑
i=1

ℓα(Yi − Xiβ)

That’s all folks!

