Statistical and Sequential Learning for Time Series Forecasting

Bagging, Random Forest, Boosting

Margaux Brégère

Classification And Regression Tree - CART

- Segmentation criteria for classification
- Segmentation criteria for regression
- Algorithm
- Bagging
 - Bootstrap
 - Prediction error diminution
- Random Forest
 - Algorithm
 - Out of bag error and importance
- Boosting
 - Adaboost
 - Gradient boosting
- Online approches

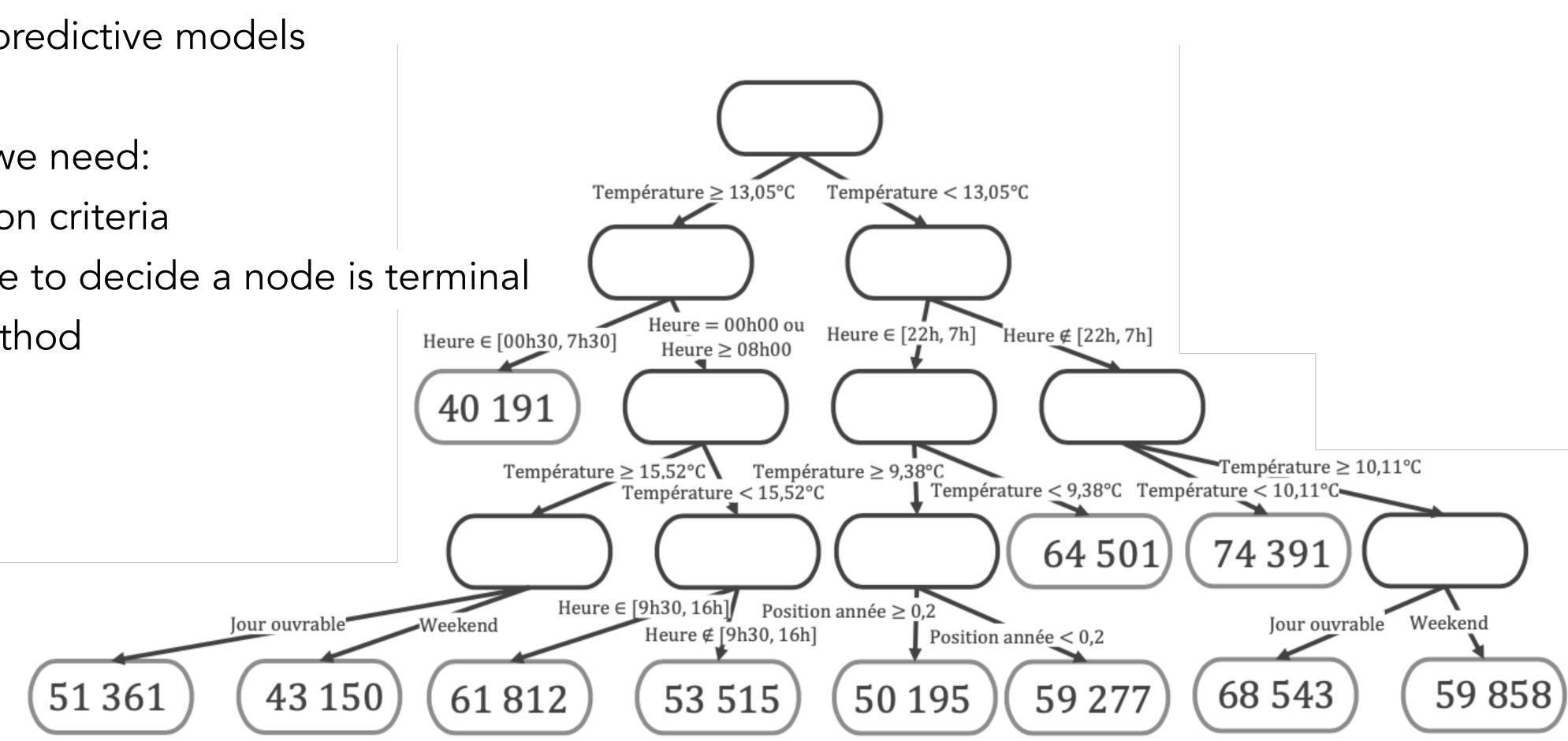
Classification And Regression Tree - CART

Framework

Classification And Regression Tree - CART are explicative and predictive models

To build a tree, we need:

- a segmentation criteria
- a decision rule to decide a node is terminal



Segmentation criteria for classification

For a node R_k , with M the number of classes, the Gini impurity is:

$$I_{\text{Gini}}(R_k) = \sum_{m=1}^{M} \frac{\sum_{i \in R_k} \mathbf{1}_{Y_i = m}}{|R_k|} \left(1 - \frac{\sum_{i \in R_k} \mathbf{1}_{Y_i = m}}{|R_k|} \right)$$

$$\frac{\sum_{i \in R_k} \mathbf{1}_{Y_i = m}}{|R_k|} = \frac{|R_k(m)|}{|R_k|}$$
 is the proportion of dat

For classification, CART algorithm aims to find the leaves $R_1, \ldots R_K$ which minimise

When is $I_{\text{Gini}}(R_k)$ the higher? And the lower?

ta that are labelled m in the node R_k

$$I_{\text{Gini}}(R_k)$$

Gini Impurity

- $I_{\text{Gini}}(R_k) = 0$ if all the elements of R_k have the same label m
- $I_{\text{Gini}}(R_k) = 1 \frac{1}{M}$ and is maximal for a uniform repartition of the labels in R_k

Proof:

Gini index is nonnegative since it is the sum of nonnegative terms and using the Cauchy-Schwarz

nequality
$$1 = \left(\sum_{m=1}^{M} \frac{|R_k(m)|}{|R_k|}\right)^2 \le \sum_{m=1}^{M} 1^2 \sum_{m=1}^{M} \left(\frac{|R_k(m)|}{|R_k|}\right)^2 = M \sum_{m=1}^{M} \left(\frac{|R_k(m)|}{|R_k|}\right)^2$$
, we get
$$0 \le I_{\text{Gini}}(R_k) = \sum_{m=1}^{M} \left(\frac{|R_k(m)|}{|R_k|} - \left(\frac{|R_k(m)|}{|R_k|}\right)^2\right) = 1 - \sum_{m=1}^{M} \left(\frac{|R_k(m)|}{|R_k|}\right)^2 \le 1 - \frac{1}{M}$$

nequality
$$1 = \left(\sum_{m=1}^{M} \frac{|R_k(m)|}{|R_k|}\right)^2 \le \sum_{m=1}^{M} 1^2 \sum_{m=1}^{M} \left(\frac{|R_k(m)|}{|R_k|}\right)^2 = M \sum_{m=1}^{M} \left(\frac{|R_k(m)|}{|R_k|}\right)^2$$
, we get $0 \le I_{\text{Gini}}(R_k) = \sum_{m=1}^{M} \left(\frac{|R_k(m)|}{|R_k|} - \left(\frac{|R_k(m)|}{|R_k|}\right)^2\right) = 1 - \sum_{m=1}^{M} \left(\frac{|R_k(m)|}{|R_k|}\right)^2 \le 1 - \frac{1}{M}$

Segmentation criteria for regression

For regression, CART algorithm aims to find the leaves $R_1, \ldots R_K$ which minimise the RSS (Residuals

Sum Squared) criteria:

$$\text{RSS} = \sum_{k=1}^{K} \sum_{i \in R_k} \left(Y_i - \bar{Y}_k \right)^2 \text{ where } \bar{Y}_k = \frac{1}{|R_k|} \sum_{i \in R_k} Y_i$$

For a leaf
$$R_k$$
, what is $\sum_{i \in R_k} (Y_i - \bar{Y}_k)^2$?

Segmentation criteria for regression

For regression, CART algorithm aims to find the leaves $R_1, \ldots R_K$ which minimise the RSS (Residuals Sum Squared) criteria:

 $RSS = \sum_{k=1}^{K} \sum_{i \in R_k} (Y_i - \sum_{k=1}^{K} (Y_k - \sum_{i \in R_k} (Y_i - \sum_{i \in R_k}$

For a leaf R_k , what is $\sum_{i \in R_k} (Y_i - \bar{Y}_k)^2$?

 $\frac{1}{|R_k|} \sum_{i \in R_k} \left(Y_i - \bar{Y}_k \right)^2 \text{ corresponds to the empirical}$

$$(\bar{Y}_k)^2$$
 where $\bar{Y}_k = \frac{1}{|R_k|} \sum_{i \in R_k} Y_i$

cal variance of the leaf
$$R_k$$
! Thus $RSS = \sum_{k=1}^{K} |R_k| V(R_k)$

Algorithm

 \rightarrow recursive Greedy-approach

Initialisation: all the observation $(Y_i, X_i)_{1,...,n}$ are in the same node (the root of the tree) While « some nodes are not terminal » or « the criteria to stop is false »

For nodes $k = 1, \ldots$

Find the best split, i.e the variables $j^* \in 1, \dots p$ and the threshold s^* such that $(j^{\star}, s^{\star}) \in \arg\min_{i,s} |R_{k_L}(j,s)| I_{\text{Gini}}(R_{k_L}(j,s)) + |R_{k_R}(j,s)| I_{\text{Gini}}(R_{k_R}(j,s)) - \text{classification}$

$$(j^{\star}, s^{\star}) \in \arg\min_{j,s} \sum_{i \in R_{k_L}(j,s)} (Y_i - \bar{Y}_{k_L})^2 + \sum_{i \in R_{k_R}(j,s)} (Y_i - \bar{Y}_{k_R})^2 - \operatorname{regression} (Y_i - \bar{Y}_{k_R})^2$$

where $R_{k_i}(j,s) = \{i \in R_k | X_{ii} \le s\}$ and $R_{k_p}(j,s) = \{i \in R_k | X_{ii} > s\}$

And cut the node into the two leaves $R_{k_{I}}(j^{\star}, s^{\star})$ and $R_{k_{R}}(j^{\star}, s^{\star})$ if it is not terminal

For both classification and regression, find the optimal partition $\rightarrow R_1, \dots, R_K$ is an NP-hard problem

Stopping criteria and pruning

Stoping criteria:

- The node R_k is cut only if it contains more than $n_{min split}$ observations
- The node R_k becomes terminal if it contains less than n_{min} bucket observations
- The node R_k is cut only if the segmentation criteria is reduced of at least $\delta > 0$

The tree may be overfitted (n_{\min} split = n_{\min} bucket = 1 and $\delta = 0$) The pruning gathers leaves when the prediction error decreases (cross-validation or data test) As for Ridge regression, it is also possible to minimise a criteria $R_{\lambda}(T) = R(T) + \lambda |T|$, where |T| is the depth of the tree T

Take-home messages

- Easy and efficient implementation
- Any assumption on variable distributions
- Can model discontinuous and non-functional phenomena
- Approximate correctly continuous phenomena (with piecewise constant function)
- Adapted to the case where the number of explanatory variables is large (perform variable selection)
- Interpretable
- Robust to outliers

Bagging

Bootstrap (B. Efron, 1979)

General framework:

- To estimate a quantity $\theta = T(F)$ from a sample $Y_1, ..., Y_n$ of n observations, which are independent and identically distributed according to the unknown distribution law F: For b = 1,...,B
 - Draw a sample Y_1^b, \ldots, Y_n^b from Y_1, \ldots, Y_n with replacement
 - Estimate θ with $\hat{\theta}^b$

Final estimation = bootstrap aggregation or b

It also possible to estimate the standard error of statistic for θ and to obtain some confidence intervals

bagging:
$$\theta = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{b}$$

Bagging and prediction error diminution

Intuition:

Aggregate independent base learners predictions will reduce the prediction error To obtain independent base learners, they should be trained on disjointed samples \rightarrow too restrictive, so bootstrap samples are used

For a new observation Y_{new} , with \hat{Y}^b_{new} the predibootstrap sample, the final prediction satisfies

$$(\hat{Y}_{\text{new}} - Y_{\text{new}})^2 = \left(\frac{1}{B}\sum_{b=1}^B \hat{Y}_{\text{new}}^b - Y_{\text{new}}\right)^2 \le \frac{1}{B}(\hat{Y}_{\text{new}}^b - Y_{\text{new}})^2$$

So the prediction error of the bagging model is lower than the mean of the errors of the base learners (this is all more true when base learners are unstable - with high variance)

For a new observation Y_{new} , with \hat{Y}_{new}^b the prediction made thanks to a base learner trained on the b

Bagging and prediction error diminution

Indeed, if the predictions are correlated this way:

$$\operatorname{Cor}(\hat{Y}^{b}, \hat{Y}^{b'}) = \begin{array}{cc} 1 & \text{if} & b = b'\\ \rho & \text{if} & b \neq b' \end{array} \text{ with } \mathbb{V}(\hat{Y}^{b}) = \sigma$$

then $\mathbb{V}(\hat{Y}) = \mathbb{V}\left(\frac{1}{B}\sum_{b=1}^{B}\hat{Y}^{b}\right) = \frac{1}{B^{2}}\left(B\sigma^{2} + B(1 - B)\right)$

.2

 $B)\rho\sigma^{2} = \rho\sigma^{2} + \frac{\sigma^{2}}{R}(1-\rho)$

Random Forest

Random Forest (Breiman, 2001)

Algorithm:

Input: sample $(Y_1, X_1), \ldots, (Y_n, X_n)$ of *n* observations For b = 1, ..., B

- Draw a bootstrap sample $(Y_1^b, X_1^b), \ldots, (Y_n^b, X_n^b)$ from $(Y_1, X_1), \ldots, (Y_n, X_n)$ with replacement
- Perform the CART algorithm with the following modification: At each node, find the best split among a subset of explanatory variables of size q Aggregate the *B* trees

If q = p, CARTs are different only because of the bootstrap procedure If q = 1, at each node, the choice of the variable (but not the threshold) is totally random Generally, we set q = p/3 for regression and $q = \sqrt{p}$ for classification

Out Of Bag error and variables importance

For b = 1, ..., B

- Draw a bootstrap sample $(Y_1^b, X_1^b), \ldots, (Y_n^b, X_n^b)$ and train the CART algorithm
- Evaluate the prediction error e_{OBB}^b of the CART on $\{(Y_1, X_1), \dots, (Y_n, X_n) \setminus (Y_1^b, X_1^b), \dots, (Y_n^b, X_n^b)\}$ \rightarrow Get an estimation of the prediction error of the random forest: $e_{OBB} = \frac{1}{R} e_{OBB}^{b}$

To measure the importance of the explanatory variable X_i :

- The values $(X_{1j}, ..., X_{ij}, ..., X_{nj})$ are randomly permuted according to a permutation π
- The OOB error is computed on both perturbed and non-perturbed data and the importance is defined as:

The greater the importance, the greater the impact on the forecast!

Importance $(X_j) = e_{OBB}((Y_i, X_{1i}, ..., X_{j\pi(i)}, ..., X_{pi})_{i=1,...,n}) - e_{OBB}((Y_i, X_{1i}, ..., X_{ji}, ..., X_{pi})_{i=1,...,n})$

Take-home messages

- Design to avoid overfitting
- Cross-validation generally non necessary
- Possible parallelisation

- Long training
- Lost of interpretability
- Need to calibrate hyper-parameter

Boosting

Intuition

Train iteratively base learners on weighted residuals and adding them to a final strong learner

Adaboost = adaptative boosting for classification

Y. Freund and R. Schapire (1995) - 2003 Gödel Prize

Inputs: Sample $(Y_1, X_1), \dots, (Y_n, X_n)$ of *n* observations, with $Y_i \in \{-1, 1\}$ Initialisation: $\omega_1 = \ldots = \omega_n = \frac{1}{n}, \hat{f}^0 = 0$

For m = 1, ..., M

Find the weak learner $\hat{h}^m \in \arg\min_h \sum_{i=1}^{k} \omega_i \mathbf{1}_{h(X_i) \leq Y_i}$

Set
$$\alpha^m = \frac{1}{2} \ln \frac{1 - \varepsilon^m}{\varepsilon^m}$$
, where $\varepsilon^m = \sum_{i=1}^n \varepsilon^n$

Add the weak learner to the strong learner $\hat{f}^m(X) = \hat{f}^{m-1}(X) + \alpha^m \hat{h}^m(X)$ Update weights $\omega_i = \omega_i \exp\left(-\alpha^m \hat{h}^m(X_i)Y_i\right)$ and renormalise them Output: \hat{f}^M

 $\omega_i \mathbf{1}_{\hat{h}^m(X_i) \leq Y_i}$

Gradient Boosting for L_2 regression

Inputs: Sample $(Y_1, X_1), \ldots, (Y_n, X_n)$ of *n* observations, with $Y_i \in \mathbb{R}$

Initialisation:
$$\hat{f}^0 = \frac{1}{n} \sum_{i=1}^n Y_i$$

For m = 1, ..., M

Find the base learner $\hat{h}^m \in \arg\min_h \sum_{i=1}^{n} \left(Y_i - y_i\right)$

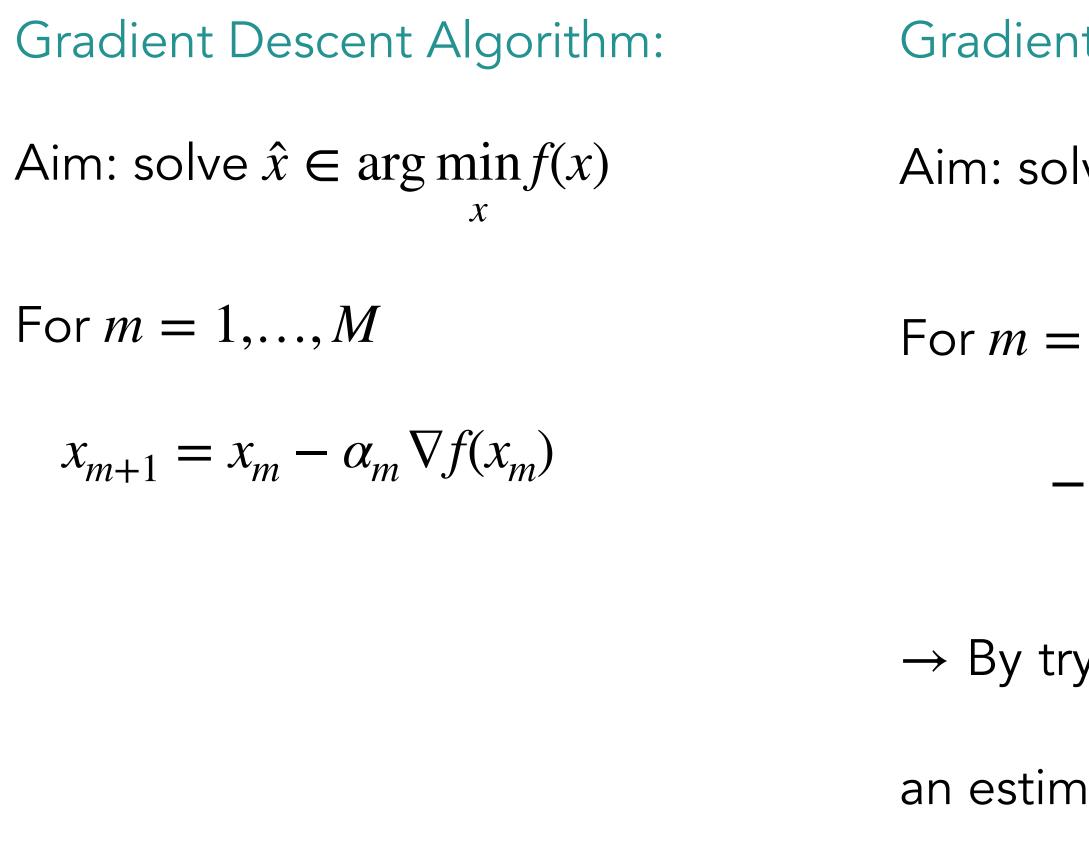
so \hat{h}^m predicts the residuals since it minimise

Add the base learner to the strong learner $\hat{f}^m(X) = \hat{f}^{m-1}(X) + \hat{h}^m(X)$ Output: \hat{f}^M

$$-\left(\hat{f}^{m-1}(X_i) + h(X_i)\right)^2$$

$$\operatorname{des} \sum_{i=1}^{n} \left(\varepsilon_{i}^{m-1} - h(X_{i}) \right)^{2} \text{ where } \varepsilon_{i}^{m-1} = Y_{i} - \hat{f}^{m-1}(X_{i})$$

Why Gradient?



Gradient Boosting:

$$| \text{ve } \hat{f} \in \arg\min_{f} \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - f(X_i) \right)^2 = \min_{f} \frac{1}{n} L(Y_i, f(X_i))$$

$$= 1, \dots, M$$

$$-\left(\frac{\partial L(Y_i, f(X_i))}{\partial f(X_i)}\right)_{f(X_i) = \hat{f}^m(X_i)} = 2\left(Y_i - \hat{f}^m(X_i)\right) = 2\varepsilon_i^m$$

 \rightarrow By trying to predict ε^m , the weak learner \hat{h}^m can be seen has an estimation of $-\nabla L(\hat{f}^m)$ where $L(f) = \frac{1}{n} \sum_{i=1}^n (Y_i - f(X_i))^2$

 $+\hat{h}^m(X_i)$ to the strong learner is a king of gradient step

Synthesis

Ensemble algorithms

General approach: create a model combining several base learners

Bagging: base learners are trained on subsets of the data (bootstrap sample)

- parallel approach
- efficient to reduce overfitting

Random forest: bagging + sampling on the variables at each split

• is generally better than bagging thank to the double sampling

Boosting: each model seeks to correct the weaknesses of the previous one

- iterative approach
- efficient to reduce bias

What to choose? It depends on how sensitive you are to bias or overfitting

Online approaches

Online Random Forest / Online Boosting

First idea: retrain all the model at each time step by eventually weighting the observations Some concerns:

- Models are complex which need lots of data to be trained so ω_t can not go to fast to 0
- ullet Models are trained to be good on all the data points (for each ω_t is high enough)
 - → Retraining probably won't really change the model...
 - \rightarrow Need of model which reacts rapidly and locally
- Costly in terms of computing time and memory

Other ideas?

Online Random Forest / Online Boosting

Weighting the base learners:

• Keep the base learners and weight them

Forest =
$$\frac{1}{B} \sum_{b=1}^{B} \text{Tree}^{b} \rightarrow \text{Forest}_{t} =$$

• Compute at each time step the weights ω_t^b using weighted linear regression

Adding a final base learner:

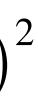
• Keep the strong learner and add a final base learner train on the weighted residuals

Boosting =
$$\hat{f}^m \to \text{Boosting}_t = \hat{f}^m + \hat{h}_t^{M+1}$$
 where $\hat{h}_t^{M+1} \in \arg\min_h \sum_{s=1}^t \omega_t (\varepsilon_s^M - h(X_t))$

where
$$\varepsilon_s^M = Y_s - \hat{f}^M(X_i)$$

Remark: explicatives variables may be different since we add a completely new model

$$\frac{1}{B} \sum_{b=1}^{B} \omega_{t}^{b} \operatorname{Tree}^{b}$$



That's all folks!