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Classification And Regression Tree - CART



Framework

Classification And Regression Tree - CART are 
explicative and predictive models 

To build a tree, we need: 
  • a segmentation criteria  
  • a decision rule to decide a node is terminal 
  • a pruning method 



Segmentation criteria for classification
For a node  , with  the number of classes, the Gini impurity is: 

 

 is the proportion of data that are labelled  in the node  

For classification, CART algorithm aims to find the leaves  which minimise  
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Gini Impurity 
  •  if all the elements of  have the same label  

  •  and is maximal for a uniform repartition of the labels in  

Proof:  

Gini index is nonnegative since it is the sum of nonnegative terms and using the Cauchy-Schwarz 

inequality , we get 
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Segmentation criteria for regression
For regression, CART algorithm aims to find the leaves  which minimise the  (Residuals 

Sum Squared) criteria:  

 where  

For a leaf , what is  ?
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Segmentation criteria for regression
For regression, CART algorithm aims to find the leaves  which minimise the  (Residuals 

Sum Squared) criteria:  

 where  

For a leaf , what is  ? 

 corresponds to the empirical variance of the leaf ! Thus 
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Algorithm
For both classification and regression, find the optimal partition   is an NP-hard problem 

 recursive Greedy-approach  

Initialisation: all the observation  are in the same node (the root of the tree) 

While « some nodes are not terminal » or « the criteria to stop is false »  

For nodes  

Find the best split, i.e the variables  and the threshold  such that  

  —   classification  

    —   regression 

where  and  

And cut the node into the two leaves  and  if it is not terminal
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Stopping criteria and pruning 
Stoping criteria: 

• The node  is cut only if it contains more than  observations  

• The node  becomes terminal if it contains less than  observations  

• The node  is cut only if the segmentation criteria is reduced of at least  

The tree may be overfitted (   and  ) 

The pruning gathers leaves when the prediction error decreases (cross-validation or data test) 

As for Ridge regression, it is also possible to minimise a criteria , where  is 

the depth of the tree 
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Take-home messages

• Easy and efficient implementation 

• Any assumption on variable distributions  

• Can model discontinuous and non-functional phenomena  

• Approximate correctly continuous phenomena (with piecewise constant function) 

• Adapted to the case where the number of explanatory variables is large (perform variable 

selection) 

• Interpretable  

• Robust to outliers



Bagging



Bootstrap (B. Efron, 1979) 
General framework:  

To estimate a quantity  from a sample  of  observations, which are independent 

and identically distributed according to the unknown distribution law : 

For  

 Draw a sample  from  with replacement 

 Estimate  with   

Final estimation = bootstrap aggregation or bagging:  

It also possible to estimate the standard error of statistic for  and to obtain some confidence 

intervals
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Bagging and prediction error diminution 

Intuition:  

Aggregate independent base learners predictions will reduce the prediction error 

To obtain independent base learners, they should be trained on disjointed samples  

 too restrictive, so bootstrap samples are used  

For a new observation , with  the prediction made thanks to a base learner trained on the 

-bootstrap sample, the final prediction satisfies 

 

So the prediction error of the bagging model is lower than the mean of the errors of the base 

learners (this is all more true when base learners are unstable - with high variance) 
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Bagging and prediction error diminution 

Indeed, if the predictions are correlated this way: 

   with   

   

then 
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Random Forest



Random Forest (Breiman, 2001) 
Algorithm:  

Input: sample  of  observations 

For  

 Draw a bootstrap sample  from  with replacement 

 Perform the CART algorithm with the following modification:   

At each node, find the best split among a subset of explanatory variables of size q  

Aggregate the  trees  

If , CARTs are different only because of the bootstrap procedure 

If , at each node, the choice of the variable (but not the threshold) is totally random  

Generally, we set  for regression and  for classification
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Out Of Bag error and variables importance
For  

 Draw a bootstrap sample  and train the CART algorithm   

 Evaluate the prediction error of the CART on   

 Get an estimation of the prediction error of the random forest:  

To measure the importance of the explanatory variable  : 

 The values  are randomly permuted according to a permutation   

 The OOB error is computed on both perturbed and non-perturbed data and the importance is 

defined as: 

 

The greater the importance, the greater the impact on the forecast!
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Take-home messages

• Design to avoid overfitting 

• Cross-validation generally non necessary 

• Possible parallelisation  

• Long training  

• Lost of interpretability  

• Need to calibrate hyper-parameter



Boosting



Intuition

Train iteratively base learners on weighted residuals and 

 adding them to a final strong learner



Adaboost = adaptative boosting for classification
Y. Freund and R. Schapire (1995) -  2003 Gödel Prize  

Inputs: Sample  of  observations, with  

Initialisation:  ,  

For   

Find the weak learner  

Set  

Add the weak learner to the strong learner  

Update weights  and renormalise them 

Output: 
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Gradient Boosting for  regressionL2

Inputs: Sample  of  observations, with  

Initialisation:  

For   

Find the base learner  

so  predicts the residuals since it minimises  where  

Add the base learner to the strong learner  
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ĥm
n

∑
i=1

(εm−1
i − h(Xi))2 εm−1

i = Yi − ̂f m−1(Xi)

̂f m(X) = ̂f m−1(X) + ĥm(X)
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Why Gradient?
Gradient Boosting: 

Aim: solve  

For   

 

 By trying to predict , the weak learner  can be seen has 

an estimation of  where  

   to the strong learner is a king of gradient step
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Gradient Descent Algorithm: 

Aim: solve  

For   
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Synthesis



Ensemble algorithms
General approach: create a model combining several base learners  

Bagging: base learners are trained on subsets of the data (bootstrap sample) 

 parallel approach 

 efficient to reduce overfitting 

Random forest: bagging + sampling on the variables at each split 

 is generally better than bagging thank to the double sampling   

Boosting: each model seeks to correct the weaknesses of the previous one  

 iterative approach 

 efficient to reduce bias 

What to choose? It depends on how sensitive you are to bias or overfitting
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Online approaches



Online Random Forest / Online Boosting
First idea: retrain all the model at each time step by eventually weighting the observations 

Some concerns: 

    • Models are complex which need lots of data to be trained so  can not go to fast to  

    • Models are trained to be good on all the data points (for each  is high enough) 

   Retraining probably won't really change the model…  

   Need of model which reacts rapidly and locally 

    • Costly in terms of computing time and memory 

Other ideas?

ωt 0
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→

→



Online Random Forest / Online Boosting
Weighting the base learners: 

    • Keep the base learners and weight them 

       

    • Compute at each time step the weights  using weighted linear regression  

Adding a final base learner: 

    • Keep the strong learner and add a final base learner train on the weighted residuals 

     +  where  

where  

Remark: explicatives variables may be different since we add a completely new model
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That’s all folks!


