
Margaux Brégère

Statistical and Sequential Learning for
Time Series Forecasting

Bagging, Random Forest, Boosting

Classification And Regression Tree - CART

Segmentation criteria for classification

Segmentation criteria for regression

Algorithm

Bagging

Bootstrap

Prediction error diminution

Random Forest

Algorithm

Out of bag error and importance

Boosting

Adaboost

Gradient boosting

Online approches

Classification And Regression Tree - CART

Framework

Classification And Regression Tree - CART are
explicative and predictive models

To build a tree, we need:
 • a segmentation criteria
 • a decision rule to decide a node is terminal
 • a pruning method

Segmentation criteria for classification
For a node , with the number of classes, the Gini impurity is:

 is the proportion of data that are labelled in the node

For classification, CART algorithm aims to find the leaves which minimise

When is the higher? And the lower?

Rk M

IGini(Rk) =
M

∑
m=1

∑i∈Rk
1Yi=m

|Rk | (1 −
∑i∈Rk

1Yi=m

|Rk |)
∑i∈Rk

1Yi=m

|Rk |
=

|Rk(m) |
|Rk |

m Rk

R1, …RK
K

∑
k=1

IGini(Rk)

IGini(Rk)

Gini Impurity
 • if all the elements of have the same label

 • and is maximal for a uniform repartition of the labels in

Proof:

Gini index is nonnegative since it is the sum of nonnegative terms and using the Cauchy-Schwarz

inequality , we get

☐

IGini(Rk) = 0 Rk m

IGini(Rk) = 1 −
1
M

Rk

1 = (
M

∑
m=1

|Rk(m) |
|Rk |)

2

≤
M

∑
m=1

12
M

∑
m=1

(|Rk(m) |
|Rk |)

2

= M
M

∑
m=1

(|Rk(m) |
|Rk |)

2

0 ≤ IGini(Rk) =
M

∑
m=1 (|Rk(m) |

|Rk |
− (|Rk(m) |

|Rk |)
2

) = 1 −
M

∑
m=1

(|Rk(m) |
|Rk |)

2

≤ 1 −
1
M

Segmentation criteria for regression
For regression, CART algorithm aims to find the leaves which minimise the (Residuals

Sum Squared) criteria:

 where

For a leaf , what is ?

R1, …RK RSS

RSS =
K

∑
k=1

∑
i∈Rk

(Yi − Ȳk)2 Ȳk =
1

|Rk | ∑
i∈Rk

Yi

Rk ∑
i∈Rk

(Yi − Ȳk)2

Segmentation criteria for regression
For regression, CART algorithm aims to find the leaves which minimise the (Residuals

Sum Squared) criteria:

 where

For a leaf , what is ?

 corresponds to the empirical variance of the leaf ! Thus

R1, …RK RSS

RSS =
K

∑
k=1

∑
i∈Rk

(Yi − Ȳk)2 Ȳk =
1

|Rk | ∑
i∈Rk

Yi

Rk ∑
i∈Rk

(Yi − Ȳk)2

1
|Rk | ∑

i∈Rk

(Yi − Ȳk)2 Rk RSS =
K

∑
k=1

|Rk |𝕍(Rk)

Algorithm
For both classification and regression, find the optimal partition is an NP-hard problem

 recursive Greedy-approach

Initialisation: all the observation are in the same node (the root of the tree)

While « some nodes are not terminal » or « the criteria to stop is false »

For nodes

Find the best split, i.e the variables and the threshold such that

 — classification

 — regression

where and

And cut the node into the two leaves and if it is not terminal

→ R1, …RK

→

(Yi, Xi)1,…,n

k = 1,…

j⋆ ∈ 1,…p s⋆

(j⋆, s⋆) ∈ arg min
j,s

|RkL
(j, s) | IGini(RkL

(j, s)) + |RkR
(j, s) | IGini(RkR

(j, s))

(j⋆, s⋆) ∈ arg min
j,s ∑

i∈RkL(j,s)
(Yi − ȲkL)

2 + ∑
i∈RkR(j,s)

(Yi − ȲkR)
2

RkL
(j, s) = {i ∈ Rk | Xij ≤ s} RkR

(j, s) = {i ∈ Rk | Xij > s}
RkL

(j⋆, s⋆) RkR
(j⋆, s⋆)

Stopping criteria and pruning
Stoping criteria:

• The node is cut only if it contains more than observations

• The node becomes terminal if it contains less than observations

• The node is cut only if the segmentation criteria is reduced of at least

The tree may be overfitted (and)

The pruning gathers leaves when the prediction error decreases (cross-validation or data test)

As for Ridge regression, it is also possible to minimise a criteria , where is

the depth of the tree

Rk nmin split

Rk nmin bucket

Rk δ > 0

nmin split = nmin bucket = 1 δ = 0

Rλ(T) = R(T) + λ |T | |T |

T

Take-home messages

• Easy and efficient implementation

• Any assumption on variable distributions

• Can model discontinuous and non-functional phenomena

• Approximate correctly continuous phenomena (with piecewise constant function)

• Adapted to the case where the number of explanatory variables is large (perform variable

selection)

• Interpretable

• Robust to outliers

Bagging

Bootstrap (B. Efron, 1979)
General framework:

To estimate a quantity from a sample of observations, which are independent

and identically distributed according to the unknown distribution law :

For

 Draw a sample from with replacement

 Estimate with

Final estimation = bootstrap aggregation or bagging:

It also possible to estimate the standard error of statistic for and to obtain some confidence

intervals

θ = T(F) Y1, …, Yn n

F

b = 1,…, B

∙ Yb
1 , …, Yb

n Y1, …, Yn

∙ θ ̂θ b

θ =
1
B

B

∑
b=1

̂θ b

θ

Bagging and prediction error diminution

Intuition:

Aggregate independent base learners predictions will reduce the prediction error

To obtain independent base learners, they should be trained on disjointed samples

 too restrictive, so bootstrap samples are used

For a new observation , with the prediction made thanks to a base learner trained on the

-bootstrap sample, the final prediction satisfies

So the prediction error of the bagging model is lower than the mean of the errors of the base

learners (this is all more true when base learners are unstable - with high variance)

→

Ynew
̂Yb
new b

(̂Ynew − Ynew)2 = (1
B

B

∑
b=1

̂Yb
new − Ynew)

2
≤

1
B (̂Yb

new − Ynew)2

Bagging and prediction error diminution

Indeed, if the predictions are correlated this way:

 with

then

Cor(̂Yb, ̂Yb′) = 1 if b = b′

ρ if b ≠ b′

𝕍(̂Yb) = σ2

𝕍(̂Y) = 𝕍(1
B

B

∑
b=1

̂Yb) =
1

B2 (Bσ2 + B(1 − B)ρσ2) = ρσ2 +
σ2

B
(1 − ρ)

Random Forest

Random Forest (Breiman, 2001)
Algorithm:

Input: sample of observations

For

 Draw a bootstrap sample from with replacement

 Perform the CART algorithm with the following modification:

At each node, find the best split among a subset of explanatory variables of size q

Aggregate the trees

If , CARTs are different only because of the bootstrap procedure

If , at each node, the choice of the variable (but not the threshold) is totally random

Generally, we set for regression and for classification

(Y1, X1), …, (Yn, Xn) n

b = 1,…, B

∙ (Yb
1 , Xb

1), …, (Yb
n , Xb

n) (Y1, X1), …, (Yn, Xn)

∙

B

q = p

q = 1

q = p/3 q = p

Out Of Bag error and variables importance
For

 Draw a bootstrap sample and train the CART algorithm

 Evaluate the prediction error of the CART on

 Get an estimation of the prediction error of the random forest:

To measure the importance of the explanatory variable :

 The values are randomly permuted according to a permutation

 The OOB error is computed on both perturbed and non-perturbed data and the importance is

defined as:

The greater the importance, the greater the impact on the forecast!

b = 1,…, B

∙ (Yb
1 , Xb

1), …, (Yb
n , Xb

n)

∙ eb
OBB {(Y1, X1), …, (Yn, Xn) \ (Yb

1 , Xb
1), …, (Yb

n , Xb
n)}

→ eOBB =
1
B

eb
OBB

Xj

∙ (X1j, …Xij, …Xnj) π

∙

Importance(Xj) = eOBB((Yi, X1i, …, Xjπ(i), …, Xpi)i=1,…,n) − eOBB((Yi, X1i, …, Xji, …, Xpi)i=1,…,n)

Take-home messages

• Design to avoid overfitting

• Cross-validation generally non necessary

• Possible parallelisation

• Long training

• Lost of interpretability

• Need to calibrate hyper-parameter

Boosting

Intuition

Train iteratively base learners on weighted residuals and

 adding them to a final strong learner

Adaboost = adaptative boosting for classification
Y. Freund and R. Schapire (1995) - 2003 Gödel Prize

Inputs: Sample of observations, with

Initialisation: ,

For

Find the weak learner

Set

Add the weak learner to the strong learner

Update weights and renormalise them

Output:

(Y1, X1), …, (Yn, Xn) n Yi ∈ {−1, 1}

ω1 = … = ωn =
1
n

̂f 0 = 0

m = 1,…, M

ĥm ∈ arg min
h

n

∑
i=1

ωi1h(Xi)≤Yi

αm =
1
2

ln
1 − εm

εm
, where εm =

n

∑
i=1

ωi1ĥm(Xi)≤Yi

̂f m(X) = ̂f m−1(X) + αmĥm(X)

ωi = ωi exp (− αmĥm(Xi)Yi)
̂fM

Gradient Boosting for regressionL2

Inputs: Sample of observations, with

Initialisation:

For

Find the base learner

so predicts the residuals since it minimises where

Add the base learner to the strong learner

Output:

(Y1, X1), …, (Yn, Xn) n Yi ∈ ℝ

̂f 0 =
1
n

n

∑
i=1

Yi

m = 1,…, M

ĥm ∈ arg min
h

n

∑
i=1

(Yi − (̂f m−1(Xi) + h(Xi)))
2

ĥm
n

∑
i=1

(εm−1
i − h(Xi))2 εm−1

i = Yi − ̂f m−1(Xi)

̂f m(X) = ̂f m−1(X) + ĥm(X)
̂fM

Why Gradient?
Gradient Boosting:

Aim: solve

For

 By trying to predict , the weak learner can be seen has

an estimation of where

 to the strong learner is a king of gradient step

̂f ∈ arg min
f

1
n

n

∑
i=1

(Yi − f(Xi))2 = min
f

1
n

L(Yi, f(Xi))

m = 1,…, M

−(∂L(Yi, f(Xi))
∂f(Xi))

f(Xi)= ̂f m(Xi)
= 2(Yi − ̂f m(Xi)) = 2εm

i

→ εm ĥm

−∇L(̂f m) L(f) =
1
n

n

∑
i=1

(Yi − f(Xi))2

+ĥm(Xi)

Gradient Descent Algorithm:

Aim: solve

For

̂x ∈ arg min
x

f(x)

m = 1,…, M

xm+1 = xm − αm ∇f(xm)

Synthesis

Ensemble algorithms
General approach: create a model combining several base learners

Bagging: base learners are trained on subsets of the data (bootstrap sample)

 parallel approach

 efficient to reduce overfitting

Random forest: bagging + sampling on the variables at each split

 is generally better than bagging thank to the double sampling

Boosting: each model seeks to correct the weaknesses of the previous one

 iterative approach

 efficient to reduce bias

What to choose? It depends on how sensitive you are to bias or overfitting

∙

∙

∙

∙

∙

Online approaches

Online Random Forest / Online Boosting
First idea: retrain all the model at each time step by eventually weighting the observations

Some concerns:

 • Models are complex which need lots of data to be trained so can not go to fast to

 • Models are trained to be good on all the data points (for each is high enough)

 Retraining probably won't really change the model…

 Need of model which reacts rapidly and locally

 • Costly in terms of computing time and memory

Other ideas?

ωt 0

ωt

→

→

Online Random Forest / Online Boosting
Weighting the base learners:

 • Keep the base learners and weight them

 • Compute at each time step the weights using weighted linear regression

Adding a final base learner:

 • Keep the strong learner and add a final base learner train on the weighted residuals

 + where

where

Remark: explicatives variables may be different since we add a completely new model

Forest =
1
B

B

∑
b=1

Treeb → Forestt =
1
B

B

∑
b=1

ωb
t Treeb

ωb
t

Boosting = ̂f m → Boosting t = ̂f m ĥM+1
t ĥM+1

t ∈ arg min
h

t

∑
s=1

ωt(εM
s − h(Xt))2

εM
s = Ys − ̂fM(Xi)

That’s all folks!

