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Classification And Regression Tree - CART


Segmentation criteria for classification


Segmentation criteria for regression


Algorithm


Bagging


Bootstrap


Prediction error diminution


Random Forest


Algorithm


Out of bag error and importance


Boosting


Adaboost 


Gradient boosting


Online approches 



Neural Networks



Formal neural
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W. McCulloch and W. Pitts (1943) 

Inputs:


• Weights 


• Bias 


• Non linear activation function 


Sigmoid 


Hyperbolic tangent 


Relu  …
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Neural network with a hidden layer

One-layer perceptron with a continuous non-
polynomial activation function  for each 
node


Output: 
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Universality Approximation Theorem 


Theorem (G. Cybenko, 1989)


Let  be a sigmoidal function  , the finite sums  of the form 

 with , ,  and , are dense in  with 

respect to the supremum norm


Equivalently, given any continuous function  and ,  , , 

 and  such that 


σ σ(x) = 1 for x → + ∞
0 for x → − ∞
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Universality Approximation Theorem 


 a neural network with a hidden layer can approximate with as much precision as desired (layer 

with  neurons and with activation functions ) any continuous function


Sketch of the proof:


Decompose in Fourier series and filter low frequencies (depends on )


Show that sine and cosine decompose on the activation function  

→
K(ε) σ

ε

σ



Universality Approximation Theorem 


Theorem (Maiorov, 1999):


If  has  Sobolev derivatives, the total number of neurons to approximate  with a one hidden layer 

neural network and a precision  is of the order of 





 has  Sobolev derivatives if its Fourier transform  satisfies ,  (low 

frequencies dominate and the function is truncated)


 exploses when (feature number) or (non-smooth function)… mathematically elegant but 

impractical except in low dimension cases!


… and yet it works! 


 Increase the number of hidden layers 


 Add filters / convolutions etc. 

f m f
ε
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f m ̂f | ̂f(ω) | = o( |ω |−m ) ∀ω ∈ ℤp
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Gradient Descent
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Neural network with  layers, 


Output: 


  where 


The neural network is trained by minimising





using gradient descent:


 


Mini-batch Gradient Descent: at each iteration, 
the gradient is computed on a (random) sub-
sample (a batch) of training data 

L

̂Yθ = ΦL(ΦL−1(…Φ1(W1TX)…))
θ = (Wl)l=1,…,L
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θk+1 = θk−η∇ℓ(θk)



Backpropagation 


Step 1 - Forward: Propagate training data through the model from input to predicted output by 
computing the successive hidden layers' outputs and finally the final layer's output


Step 2 - Backward: Adjust the weights with gradient step:


The derivative is easy to calculate for final layer weights, and possible to calculate for one layer 
given the next layer's derivatives. Starting at the end, then, the derivatives are calculated layer by 
layer toward the beginning -- thus « backpropagation » 


Repeatedly update the weights until they converge or the model has undergone enough iterations




Recurrent Neural Networks

Sequential data: Time series - Text - Audio 



Recurrent Neural Network (RNN)
̂yt = softmax(c + Wht)

ht = f(b + Uxt + Vht−1) , with f = tanh or ReLU .



Recurrent Neural Network (RNN)

Training RNN with backpropagation: 

gradients vanish (derivative of the tanh activation function which is smaller than 1) 

or explose (if weights  are large enough to overpower the smaller tanh derivative)

 Clipping gradient 


If sequences are short the matrix products do not vanish or explode for gradient computations  
 RNNs mainly learn short-term dependencies

V
→

→



Long Short-Term Memory (LSTM)

output Forget Gate = c′￼t = ct−1 × σ(Uf xt + Vf ht−1 + bf)
output Input Gate = ct = c′￼t + σ(Uixt + Vihh−1 + bi) × tanh(Ucxt + Vchh−1 + bc)

output Output Gate = ̂yt = ht = σ(Uoxt + Vohh−1 + bo) × tanh(ct) .



Long Short-Term Memory (LSTM)
The gating mechanism is used for updating and resetting the hidden state accordingly  

A memory cell has an internal state is equipped with multiplicative gates which determine:  

• Whether a given input should impact the internal state - input gate 


• Whether the internal state should be put to 0 - forget gate 


• Whether the internal state should impact the cell's output - output gate  



Gated recurrent unit (GRU)

rt = output Reset Gate

= ht−1 × σ(Urxt + Vrht−1 + br)
with zt = σ(Uzxt + Vzht−1 + bz)
and h′￼t = σ(Uhxt + Whrt + bh)

̂yt = output Update Gate

= ht = ht−1 × (zt − 1) + h′￼t × zt .



That’s all folks!


