
Margaux Brégère

Statistical and Sequential Learning for

Time Series Forecasting

Neural Networks, RNN, LSTM etc.

Classification And Regression Tree - CART

Segmentation criteria for classification

Segmentation criteria for regression

Algorithm

Bagging

Bootstrap

Prediction error diminution

Random Forest

Algorithm

Out of bag error and importance

Boosting

Adaboost

Gradient boosting

Online approches

Neural Networks

Formal neural

ωm

ω1

ωm−1

σ(⋅), b

s

u1

um

um−1

W. McCulloch and W. Pitts (1943)

Inputs:

• Weights

• Bias

• Non linear activation function

Sigmoid

Hyperbolic tangent

Relu …

Output:

ω1, ω2, …, ωm

b

σ(⋅)

σ(x) =
1

1 + e−x

σ(x) =
ex − e−x

ex + e−x

σ(x) = max(0, x)

s = σ(
m

∑
k=1

ωkuk − b)

Neural network with a hidden layer

One-layer perceptron with a continuous non-
polynomial activation function for each
node

Output:

σ(⋅)

̂f(X) =
K

∑
k=1

νkσ(
p

∑
j=1

ωjkXj − bk) =
K

∑
k=1

νkσ(ωT
k X − bk)

Universality Approximation Theorem

Theorem (G. Cybenko, 1989)

Let be a sigmoidal function , the finite sums of the form

 with , , and , are dense in with

respect to the supremum norm

Equivalently, given any continuous function and , , ,

 and such that

σ σ(x) = 1 for x → + ∞
0 for x → − ∞

sK : [0, 1]p → ℝ

sK (X) =
K

∑
k=1

ak σ(ωT
k X + bk) K ∈ ℕ ak ∈ ℝ ωk ∈ ℝp bk ∈ ℝ C([0, 1]p)

f : [0, 1]p → ℝ ε > 0 ∃ K ∈ ℕ a1, …, aK ∈ ℝ
ω1, …, ωK ∈ ℝp b1, …, bK ∈ ℝ

∀X ∈ [0,1]p , f(X) −
K

∑
k=1

ak σ(ωT
k X + bk) < ε

Universality Approximation Theorem

 a neural network with a hidden layer can approximate with as much precision as desired (layer

with neurons and with activation functions) any continuous function

Sketch of the proof:

Decompose in Fourier series and filter low frequencies (depends on)

Show that sine and cosine decompose on the activation function

→
K(ε) σ

ε

σ

Universality Approximation Theorem

Theorem (Maiorov, 1999):

If has Sobolev derivatives, the total number of neurons to approximate with a one hidden layer

neural network and a precision is of the order of

 has Sobolev derivatives if its Fourier transform satisfies , (low

frequencies dominate and the function is truncated)

 exploses when (feature number) or (non-smooth function)… mathematically elegant but

impractical except in low dimension cases!

… and yet it works!

 Increase the number of hidden layers

 Add filters / convolutions etc.

f m f
ε

K ≈ ε− p − 1
m

f m ̂f | ̂f(ω) | = o(|ω |−m) ∀ω ∈ ℤp

K p ↗ m ↘

→

→

Gradient Descent

w1
11

w1
43

w1
21

w2
11

w3
11

w4
11

Φ1 b1
1

Φ1 b1
2

Φ1 b4
1

Φ2 b2
1

Φ3 b3
1

Φ4 b4
1 x4

1 = ̂Y

X1

Xp

x3
1

x3
2

x1
1

Neural network with layers,

Output:

 where

The neural network is trained by minimising

using gradient descent:

Mini-batch Gradient Descent: at each iteration,
the gradient is computed on a (random) sub-
sample (a batch) of training data

L

̂Yθ = ΦL(ΦL−1(…Φ1(W1TX)…))
θ = (Wl)l=1,…,L

ℓ(θ) =
1
n

n

∑
i=1

(̂Yθ
i − Yi)2

θk+1 = θk−η∇ℓ(θk)

Backpropagation

Step 1 - Forward: Propagate training data through the model from input to predicted output by
computing the successive hidden layers' outputs and finally the final layer's output

Step 2 - Backward: Adjust the weights with gradient step:

The derivative is easy to calculate for final layer weights, and possible to calculate for one layer
given the next layer's derivatives. Starting at the end, then, the derivatives are calculated layer by
layer toward the beginning -- thus « backpropagation »

Repeatedly update the weights until they converge or the model has undergone enough iterations

Recurrent Neural Networks

Sequential data: Time series - Text - Audio

Recurrent Neural Network (RNN)
̂yt = softmax(c + Wht)

ht = f(b + Uxt + Vht−1) , with f = tanh or ReLU .

Recurrent Neural Network (RNN)

Training RNN with backpropagation:

gradients vanish (derivative of the tanh activation function which is smaller than 1)

or explose (if weights are large enough to overpower the smaller tanh derivative)

 Clipping gradient

If sequences are short the matrix products do not vanish or explode for gradient computations  
 RNNs mainly learn short-term dependencies

V
→

→

Long Short-Term Memory (LSTM)

output Forget Gate = c′￼t = ct−1 × σ(Uf xt + Vf ht−1 + bf)
output Input Gate = ct = c′￼t + σ(Uixt + Vihh−1 + bi) × tanh(Ucxt + Vchh−1 + bc)

output Output Gate = ̂yt = ht = σ(Uoxt + Vohh−1 + bo) × tanh(ct) .

Long Short-Term Memory (LSTM)
The gating mechanism is used for updating and resetting the hidden state accordingly  

A memory cell has an internal state is equipped with multiplicative gates which determine:  

• Whether a given input should impact the internal state - input gate

• Whether the internal state should be put to 0 - forget gate

• Whether the internal state should impact the cell's output - output gate  

Gated recurrent unit (GRU)

rt = output Reset Gate

= ht−1 × σ(Urxt + Vrht−1 + br)
with zt = σ(Uzxt + Vzht−1 + bz)
and h′￼t = σ(Uhxt + Whrt + bh)

̂yt = output Update Gate

= ht = ht−1 × (zt − 1) + h′￼t × zt .

That’s all folks!

