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Classification And Regression Tree - CART 

Segmentation criteria for classification 

Segmentation criteria for regression 
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Neural Networks
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W. McCulloch and W. Pitts (1943) 

Inputs: 

• Weights  

• Bias  

• Non linear activation function  

Sigmoid  

Hyperbolic tangent  

Relu  … 
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Neural network with a hidden layer

One-layer perceptron with a continuous non-
polynomial activation function  for each 
node 
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Universality Approximation Theorem  

Theorem (G. Cybenko, 1989) 

Let  be a sigmoidal function  , the finite sums  of the form 

 with , ,  and , are dense in  with 

respect to the supremum norm 

Equivalently, given any continuous function  and ,  , , 

 and  such that  

σ σ(x) = 1 for x → + ∞
0 for x → − ∞
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Universality Approximation Theorem  

 a neural network with a hidden layer can approximate with as much precision as desired (layer 

with  neurons and with activation functions ) any continuous function 

Sketch of the proof: 

Decompose in Fourier series and filter low frequencies (depends on ) 

Show that sine and cosine decompose on the activation function  

→
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ε
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Universality Approximation Theorem  

Theorem (Maiorov, 1999): 

If  has  Sobolev derivatives, the total number of neurons to approximate  with a one hidden layer 

neural network and a precision  is of the order of  

 

 has  Sobolev derivatives if its Fourier transform  satisfies ,  (low 

frequencies dominate and the function is truncated) 

 exploses when (feature number) or (non-smooth function)… mathematically elegant but 

impractical except in low dimension cases! 

… and yet it works!  

 Increase the number of hidden layers  

 Add filters / convolutions etc. 
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Gradient Descent
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Neural network with  layers,  

Output:  

  where  

The neural network is trained by minimising 

 

using gradient descent: 

  

Mini-batch Gradient Descent: at each iteration, 
the gradient is computed on a (random) sub-
sample (a batch) of training data 

L
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Backpropagation  

Step 1 - Forward: Propagate training data through the model from input to predicted output by 
computing the successive hidden layers' outputs and finally the final layer's output 

Step 2 - Backward: Adjust the weights with gradient step: 

The derivative is easy to calculate for final layer weights, and possible to calculate for one layer 
given the next layer's derivatives. Starting at the end, then, the derivatives are calculated layer by 
layer toward the beginning -- thus « backpropagation »  

Repeatedly update the weights until they converge or the model has undergone enough iterations 



Recurrent Neural Networks 
Sequential data: Time series - Text - Audio 



Recurrent Neural Network (RNN)
̂yt = softmax(c + Wht)

ht = f(b + Uxt + Vht−1) , with f = tanh or ReLU .



Recurrent Neural Network (RNN)

Training RNN with backpropagation:  
gradients vanish (derivative of the tanh activation function which is smaller than 1)  
or explose (if weights  are large enough to overpower the smaller tanh derivative) 
 Clipping gradient  

If sequences are short the matrix products do not vanish or explode for gradient computations  
 RNNs mainly learn short-term dependencies

V
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Long Short-Term Memory (LSTM)

output Forget Gate = c′ t = ct−1 × σ(Uf xt + Vf ht−1 + bf)
output Input Gate = ct = c′ t + σ(Uixt + Vihh−1 + bi) × tanh(Ucxt + Vchh−1 + bc)

output Output Gate = ̂yt = ht = σ(Uoxt + Vohh−1 + bo) × tanh(ct) .



Long Short-Term Memory (LSTM)
The gating mechanism is used for updating and resetting the hidden state accordingly  

A memory cell has an internal state is equipped with multiplicative gates which determine:  

• Whether a given input should impact the internal state - input gate  

• Whether the internal state should be put to 0 - forget gate  

• Whether the internal state should impact the cell's output - output gate  



Gated recurrent unit (GRU)

rt = output Reset Gate

= ht−1 × σ(Urxt + Vrht−1 + br)
with zt = σ(Uzxt + Vzht−1 + bz)
and h′ t = σ(Uhxt + Whrt + bh)

̂yt = output Update Gate

= ht = ht−1 × (zt − 1) + h′ t × zt .



That’s all folks!


