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Introduction



Framework
Let  be a time series 

Assumption: at a time step   
 Observe the data with a delay :  
 Receive  predictions  from expert advice / (deterministic or statistic) models 

Aim 
Providing the best possible forecast   of the future realisation of  by mixing the predictions 

☞ Aggregation    

Forecast evaluation:  
On a testing dataset  and a loss function ,  we aim to minimise 

Y = ( Yt )t ∈ ℕ⋆

t = 1, 2, 3, …
∙ d Yt−d
∙ K f1t, …, fKt

̂Yt Y

̂Yt = ̂f(f1t, …, fKt) =
K

∑
k=1

ωk,t fkt

{Yt, f1t, …, fKt}t=1, …, T
ℓ

1
T

T

∑
t=1

ℓ(Yt, ̂Yt )



Illustration

    ̂Yt =
K

∑
k=1

ωk,t fkt

Expert 1

Expert 2

Expert K

f1,t = Neural Network(Xt)

f1,K = Vision of Cassandra at t

f2,t = PDE resolution at t
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Regret
To assess the quality of the final forecast, a benchmark is needed!  

We could look directly at the performance of , but that wouldn't make much sense:  
 if all the experts are bad, the mixture of forecasts will has poor performance, whereas it's 

possible that the aggregation performs well (that the mixture is better than each forecast) 
 Conversely, if all the forecasts are good, it is highly likely that whatever the mix, it will be 

good 

We need:  
 a set for the weights  (the simplex of K-dimension for exemple) 
 a set  of strategies to compare ourselves (the set of constant strategies for example) 

Regret:  - 

̂Yt
∙

∙

∙ ωkt
∙ S

RT =
T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωkt fkt ) min
s∈S

T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωkt(s) fkt )



Examples
Regret regarding the best expert: 

 -  

Regret regarding the best constant convex combination of experts: 

 -   

with  and  

Question: What kind of regret should our strategy have?  

Clue: What is the regret of a dumb strategy?

RT =
T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωkt fkt ) min
k=1,…K

T

∑
t=1

ℓ(Yt, fkt )

RT =
T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωkt fkt ) min
ω1,…,ωK

T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωk fkt )
K

∑
k=1

ωk = 1 ∀k = 1,…, K, ωk ∈ [0,1]



Regret bounds 

If the loss function is bounded (true as soon as  is too),  the regret is at most proportional to  

 our strategy should satisfy 

  

So as time goes by, we get closer to the strategy we're comparing ourselves to, or even better: we 
beat it!

Yt T

→

lim
T→∞

sup
f1,1,…, fk,t,…, fK,T

RT

T
→ 0



Algorithms



Exponentially Weighted Aggregation (EWA)  

Parameter:  
Initialisation:  

  (uniform weights) 

 Prediction:  (empirical mean) 

For  

 Weight updates:  

 Prediction:  (empirical mean)

η > 0

∙ ∀k = 1,…, K, ωk1 =
1
K

∙ ̂Y1 =
1
K

K

∑
k=1

fk1

t = 2,…, T

∙ ∀k = 1,…, K, ωk =
exp( − η∑t−1

s=1 ℓ(Ys, fks))
∑K

j=1 exp( − η∑t−1
s=1 ℓ(Ys, fjs))

∙ ̂Yt =
K

∑
k=1

ωkt fkt



EWA regret bound (Stoltz, 2010) 

Assumptions:  

 Loss function  is bounded 

 ,  is convex 

Then, for any  

 

How to choose  

∙ ℓ : ℝ × ℝ → [0,M]
∙ ∀Y ℓ(Y, ⋅ )

η > 0

sup
f1,1,…, fk,t,…, fK,T

(
T

∑
t=1

ℓ(Yt, ̂YEWA
t ) − min

k=1,…,K
ℓ(Yt, fkt)) ≤

ln K
η

+
ηM2

8
T

η?



EWA regret bound (Stoltz, 2010) 

Assumptions:  

 Loss function  is bounded 

 ,  is convex 

Then, for any  

 

With  , we get 

∙ ℓ : ℝ × ℝ → [0,M]
∙ ∀Y ℓ(Y, ⋅ )

η > 0

sup
f1,1,…, fk,t,…, fK,T

(
T

∑
t=1

ℓ(Yt, ̂YEWA
t ) − min

k=1,…,K
ℓ(Yt, fkt)) ≤

ln K
η

+
ηM2

8
T

η =
1
M

8 ln K
T

RT = 𝒪(M
T

2 ln K )



EWA with Gradient Trick = Exponential Gradient

Parameter:  
Initialisation:  

  (uniform weights) 

 Prediction:  (empirical mean) 

For  

 Weight updates:  

 Prediction:  (empirical mean)

η > 0

∙ ∀k = 1,…, K, ωk1 =
1
K

∙ ̂Y1 =
1
K

K

∑
k=1

fk1

t = 2,…, T

∙ ∀k = 1,…, K, ωk =
exp( − η∑t−1

s=1 ∂ℓ(Ys, ̂Ys) ⋅ fks)
∑K

j=1 exp( − η∑t−1
s=1 ∂ℓ(Ys, ̂Ys) ⋅ fjs)

∙ ̂Yt =
K

∑
k=1

ωkt fkt



Exponential Gradient (EG) - L2

 

Intuition: 

 If , experts who forecast the lowest values are at an advantage 

 If , experts who forecast the highest values are at an advantage

∀k = 1,…, K, ωk =
exp( − η∑t−1

s=1 2( ̂Ys − Ys)fks)
∑K

j=1 exp( − η∑t−1
s=1 2( ̂Ys − Ys)fjs)

∙ ̂Ys > Ys

∙ ̂Ys < Ys



In practice



How do you choose experts?



How do you choose experts?

Encouraging diversity!



Encouraging diversity!
→ Train models using a variety of data: 

  Estimation periods 
  Input variables / features 
  Spatial / Temporal resolution 

→ Consider various methods:  
  Linear models 
  Ensemble models 
  Neural networks models 
  Deliberately biased models, …  

→ Consider various loss functions:  
  L2 
  L1 
  Multiple quantile loss (so The variable to be forecast is in the convex envelope of the experts' 

forecasts )…
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Application

    ̂Yt =
K

∑
k=1

ωk,t fkt

Linear 
Regression

Online Linear 
Regression

Online Weighted 
Linear Regression

CART

Random Forest

Online 
Random Forest

Online Weighted 
Random Forest

Bagging

Boosting

Boosting +Corrective 
CART

LSTM

RNN

Model +Corrective 
AR / RNN

Model + AR

μ

μ

Offline learning  

Offline learning using lags  

Online learning 

̂f(Xt)
̂f(Xt, Yt−1, Yt−2, …)

̂ft(Xt, Yt−1, Yt−2, …)



That’s all folks!


