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Introduction



Framework
Let  be a time series


Assumption: at a time step  

 Observe the data with a delay : 

 Receive  predictions  from expert advice / (deterministic or statistic) models


Aim

Providing the best possible forecast   of the future realisation of  by mixing the predictions


☞ Aggregation   


Forecast evaluation: 

On a testing dataset  and a loss function ,  we aim to minimise


Y = ( Yt )t ∈ ℕ⋆

t = 1, 2, 3, …
∙ d Yt−d
∙ K f1t, …, fKt

̂Yt Y

̂Yt = ̂f(f1t, …, fKt) =
K

∑
k=1

ωk,t fkt

{Yt, f1t, …, fKt}t=1, …, T
ℓ

1
T

T

∑
t=1

ℓ(Yt, ̂Yt )



Illustration

    ̂Yt =
K

∑
k=1

ωk,t fkt

Expert 1

Expert 2

Expert K

f1,t = Neural Network(Xt)

f1,K = Vision of Cassandra at t

f2,t = PDE resolution at t
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Regret
To assess the quality of the final forecast, a benchmark is needed! 


We could look directly at the performance of , but that wouldn't make much sense: 

 if all the experts are bad, the mixture of forecasts will has poor performance, whereas it's 

possible that the aggregation performs well (that the mixture is better than each forecast)

 Conversely, if all the forecasts are good, it is highly likely that whatever the mix, it will be 

good


We need: 

 a set for the weights  (the simplex of K-dimension for exemple)

 a set  of strategies to compare ourselves (the set of constant strategies for example)


Regret:  - 

̂Yt
∙

∙

∙ ωkt
∙ S

RT =
T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωkt fkt ) min
s∈S

T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωkt(s) fkt )



Examples
Regret regarding the best expert:


 - 


Regret regarding the best constant convex combination of experts:


 -  


with  and 


Question: What kind of regret should our strategy have? 


Clue: What is the regret of a dumb strategy?

RT =
T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωkt fkt ) min
k=1,…K

T

∑
t=1

ℓ(Yt, fkt )

RT =
T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωkt fkt ) min
ω1,…,ωK

T

∑
t=1

ℓ(Yt,
K

∑
k=1

ωk fkt )
K

∑
k=1

ωk = 1 ∀k = 1,…, K, ωk ∈ [0,1]



Regret bounds 

If the loss function is bounded (true as soon as  is too),  the regret is at most proportional to 


 our strategy should satisfy


 


So as time goes by, we get closer to the strategy we're comparing ourselves to, or even better: we 
beat it!

Yt T

→

lim
T→∞

sup
f1,1,…, fk,t,…, fK,T

RT

T
→ 0



Algorithms



Exponentially Weighted Aggregation (EWA) 


Parameter: 

Initialisation: 


  (uniform weights)


 Prediction:  (empirical mean)


For 


 Weight updates: 


 Prediction:  (empirical mean)

η > 0

∙ ∀k = 1,…, K, ωk1 =
1
K

∙ ̂Y1 =
1
K

K

∑
k=1

fk1

t = 2,…, T

∙ ∀k = 1,…, K, ωk =
exp( − η∑t−1

s=1 ℓ(Ys, fks))
∑K

j=1 exp( − η∑t−1
s=1 ℓ(Ys, fjs))

∙ ̂Yt =
K

∑
k=1

ωkt fkt



EWA regret bound (Stoltz, 2010)


Assumptions: 


 Loss function  is bounded


 ,  is convex


Then, for any 





How to choose  

∙ ℓ : ℝ × ℝ → [0,M]
∙ ∀Y ℓ(Y, ⋅ )

η > 0

sup
f1,1,…, fk,t,…, fK,T

(
T

∑
t=1

ℓ(Yt, ̂YEWA
t ) − min

k=1,…,K
ℓ(Yt, fkt)) ≤

ln K
η

+
ηM2

8
T

η?



EWA regret bound (Stoltz, 2010)


Assumptions: 


 Loss function  is bounded


 ,  is convex


Then, for any 





With  , we get 

∙ ℓ : ℝ × ℝ → [0,M]
∙ ∀Y ℓ(Y, ⋅ )

η > 0

sup
f1,1,…, fk,t,…, fK,T

(
T

∑
t=1

ℓ(Yt, ̂YEWA
t ) − min

k=1,…,K
ℓ(Yt, fkt)) ≤

ln K
η

+
ηM2

8
T

η =
1
M

8 ln K
T

RT = 𝒪(M
T

2 ln K )



EWA with Gradient Trick = Exponential Gradient

Parameter: 

Initialisation: 


  (uniform weights)


 Prediction:  (empirical mean)


For 


 Weight updates: 


 Prediction:  (empirical mean)

η > 0

∙ ∀k = 1,…, K, ωk1 =
1
K

∙ ̂Y1 =
1
K

K

∑
k=1

fk1

t = 2,…, T

∙ ∀k = 1,…, K, ωk =
exp( − η∑t−1

s=1 ∂ℓ(Ys, ̂Ys) ⋅ fks)
∑K

j=1 exp( − η∑t−1
s=1 ∂ℓ(Ys, ̂Ys) ⋅ fjs)

∙ ̂Yt =
K

∑
k=1

ωkt fkt



Exponential Gradient (EG) - L2




Intuition:


 If , experts who forecast the lowest values are at an advantage


 If , experts who forecast the highest values are at an advantage

∀k = 1,…, K, ωk =
exp( − η∑t−1

s=1 2( ̂Ys − Ys)fks)
∑K

j=1 exp( − η∑t−1
s=1 2( ̂Ys − Ys)fjs)

∙ ̂Ys > Ys

∙ ̂Ys < Ys



In practice



How do you choose experts?



How do you choose experts?

Encouraging diversity!



Encouraging diversity!
→ Train models using a variety of data:


  Estimation periods

  Input variables / features

  Spatial / Temporal resolution


→ Consider various methods: 

  Linear models

  Ensemble models

  Neural networks models

  Deliberately biased models, … 


→ Consider various loss functions: 

  L2

  L1

  Multiple quantile loss (so The variable to be forecast is in the convex envelope of the experts' 

forecasts )…
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Application

    ̂Yt =
K

∑
k=1

ωk,t fkt

Linear 
Regression

Online Linear 
Regression

Online Weighted 
Linear Regression

CART

Random Forest

Online 
Random Forest

Online Weighted 
Random Forest

Bagging

Boosting

Boosting +Corrective 
CART

LSTM

RNN

Model +Corrective 
AR / RNN

Model + AR

μ

μ

Offline learning 


Offline learning using lags 


Online learning 

̂f(Xt)
̂f(Xt, Yt−1, Yt−2, …)

̂ft(Xt, Yt−1, Yt−2, …)



That’s all folks!


