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Abstract

We study online learning in episodic finite-
horizon Markov decision processes (MDPs) with
convex objective functions, known as the concave
utility reinforcement learning (CURL) problem.
This setting generalizes RL from linear to convex
losses on the state-action distribution induced by
the agent’s policy. The non-linearity of CURL
invalidates classical Bellman equations and re-
quires new algorithmic approaches. We introduce
the first algorithm achieving near-optimal regret
bounds for online CURL without any prior knowl-
edge on the transition function. To achieve this,
we use an online mirror descent algorithm with
varying constraint sets and a carefully designed
exploration bonus. We then address for the first
time a bandit version of CURL, where the only
feedback is the value of the objective function on
the state-action distribution induced by the agent’s
policy. We achieve a sub-linear regret bound for
this more challenging problem by adapting tech-
niques from bandit convex optimization to the
MDP setting.

1. Introduction

Reinforcement learning (RL) studies the problem where an
agent interacts with an environment over time, adhering to
a probabilistic policy that maps states to actions and aiming
to minimize the cumulative expected losses. The environ-
ment’s dynamics are represented by a Markov decision pro-
cess (MDP), assumed here to be episodic, with episodes of
length N, a finite state space X, a finite action space A, and
a sequence of probability transition kernels p := (pn)ne[ N]»
such that for each (z,a) € X x A, p,, (+|x, a) € Ay, the sim-
plex over the state space. Formally, the RL problem involves
finding a policy = that, under a transition kernel p, induces
a state-action distribution sequence ;1™ € (Axx_4)" mini-
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mizing the inner product with a loss vector £ := (£y,)ne[N]s
with £, € RY*4 ie.: minge(a 2w {6 u™P). A large
body of literature is devoted to solving the RL problem effi-
ciently and with theoretical guarantees in many challenging
environments (Bertsekas, 2019; Sutton & Barto, 2018).

However, numerous practical problems entail more intricate
objectives, such as those encountered within the Concave
Utility Reinforcement Learning (CURL) framework (Hazan
et al., 2019; Zahavy et al., 2021) (also known as convex
RL). The CURL problem consists in minimizing a convex
function (or maximizing a concave function) on the state-
action distributions induced by an agent’s policy:

mingea 4 )xxn F(u™P). @)

In addition to RL, other examples of machine learning
problems that can be written as CURL are pure explo-
ration (Hazan et al., 2019; Mutti et al., 2021; 2022),
where F(u™P) = (u™P log(p™P)); imitation learning
(Ghasemipour et al., 2020; Lavington et al., 2022) and
apprenticeship learning (Zahavy et al., 2019; Abbeel &
Ng, 2004), where F(u™P) = Dg(u™?, u*), with D, rep-
resenting a Bregman divergence induced by a function g
and p* being a behavior to be imitated; certain instances
of mean-field control (Bensoussan et al., 2013), where
F(u™P) = {l(u™P), u™P); mean-field games with poten-
tial rewards (Lavigne & Pfeiffer, 2023); risk-averse RL
(Garcia et al., 2015; Pan et al., 2019; Greenberg et al., 2022),
among others. The non-linearity of CURL alters the ad-
ditive structure inherent in standard RL, invalidating the
classical Bellman equations. Consequently, dynamic pro-
gramming approaches become infeasible, necessitating the
development of novel methodologies.

A natural extension of CURL is the online scenario, wherein
a sequence of policies (m')i[r) is computed over T
episodes, aimed at minimizing a cumulative loss Ly :=
Zle F' (1™ ), where the objective F* can change arbi-
trarily (known as the adversarial scenario (Even-Dar et al.,
2009)), and the MDP probability kernel p is unknown. Most
existing approaches to CURL fail to address the challenges
of the online setting (adversarial losses and unknown dynam-
ics). The few methods that attempt to tackle this problem
rely on strong assumptions about the probability transition
kernel (Moreno et al., 2024), which can be overly restric-
tive in real-world scenarios. To overcome this, we need
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an approach capable of optimizing the objective function
while simultaneously learning the environment, effectively
balancing the exploration-exploitation dilemma.

Contribution 1. In the full-information feedback setting,
where the objective function F* is fully revealed to the
learner at the end of episode ¢, we propose the first method
achieving sub-linear regret for online CURL with adversar-
ial losses and unknown transition kernels, without relying
on additional model assumptions. Our algorithm uses an
Online Mirror Descent (OMD) variant incorporating well-
designed exploration bonuses into the sub-gradient of the
objective function to handle the exploration-exploitation
trade-off. It achieves a regret of O(+/T'), matching the state-
of-the-art (SoTA) in more restricted settings (Moreno et al.,
2024), while obtaining a closed-form solution.

Contribution 2. We extend our approach to incorporate
bandit feedback on the objective function. We first consider
the RL case where F(u1) := (¢!, ). Bandit feedback in
this setting means that the agent only observes the loss func-
tion in the state-action pairs they visit during each episode,
ie. (£ (xh,al))nen) wWhere (2, al))neny is the agent’s
trajectory. We obtain the optimal regret of O~(\/T) in this
setting. We then address for the first time the general CURL
problem under more strict bandit feedback. In this setting,
the learner only has access to the value of the objective
function evaluated on the state-action distribution sequence
induced by the agent’s policy, i.e., Ft(;ﬂtvp ). We propose
two algorithms for this setting and show that they achieve
sub-linear regret. One algorithm requires that the MDP is
known, while the other, under an additional assumption on
the structure of the MDP, operates in the setting where the
MDP is estimated progressively from observed trajectories.
We rely on gradient estimation techniques from the bandit
convex optimization literature, even as the peculiar struc-
ture of our constraint set and uncertainty regarding the true
transition kernel present some unique challenges.

1.1. Related Work

Offline CURL. An extensive line of work focus on the of-
fline version of CURL (Problem (1)), where the objective
function is known and fixed. The methodologies proposed
by (Zhang et al., 2020; 2021; Barakat et al., 2023) rely on
policy gradient techniques, requiring the estimation of F”’s
gradient concerning the policy 7, a task often complex. Tak-
ing a different approach, Zahavy et al. (2021) cast the CURL
problem as a min-max game using Fenchel duality, demon-
strating that conventional RL algorithms can be tailored to
fit the CURL framework. Recently, Geist et al. (2022) estab-
lished that CURL is a specific instance of mean-field games.
Moreover, Moreno et al. (2024) undertake a convexification
of Problem (1) and propose a mirror descent algorithm with
a non-standard Bregman divergence. Mutti et al. (2023a;b)

study the gap between evaluating agent performance over
infinite realizations versus finite trials and question the clas-
sic CURL formulation in Eq. (1). To align with prior work,
we adopt the classic CURL formulation.

Online CURL. To the best of our knowledge, Greedy MD-
CURL from (Moreno et al., 2024) is the only regret min-
imization algorithm designed for online CURL. However,
it only achieves sublinear regret when the system dynam-
ics follow the form x,11 = gn(zn,an,cn), Where g,
is a known deterministic function, and ¢,, is an external
noise with an unknown distribution independent of (x,,, a,,),
which significantly limits its applicability, as we empirically
show in Sec. 5. This assumption simplifies the problem,
as the algorithm only needs to learn the noise distribution,
which can be done independently of the policy, eliminating
the need for exploration. In contrast, our approach does
not assume any specific form for the dynamics, which intro-
duces the challenge of developing a policy that minimizes
total loss while simultaneously enabling sufficient explo-
ration to improve estimates of the transition kernels. The
technical novelty we introduce to overcome this challenge
are well-designed exploration bonuses detailed in Sec. 3.

RL approaches. Model-optimistic methods construct a set
of plausible MDPs by forming confidence bounds around
the empirical transition kernels, then select the policy that
maximizes the expected reward in the best feasible MDP. A
key example of this approach is UCRL (Upper Confidence
RL) methods (Jaksch et al., 2008; Zimin & Neu, 2013;
Rosenberg & Mansour, 2019b; Jin et al., 2020). While these
methods offer strong theoretical guarantees, they are often
difficult to implement due to the complexity of optimizing
over all plausible MDPs. While we believe these approaches
could be generalized to CURL, their computational com-
plexity has led us to propose an alternative method. Value-
optimistic methods are value-based approaches that compute
optimistic value functions, rather than optimistic models,
using dynamic programming. An example is UCB-VI (Azar
et al., 2017). However, these methods are limited to stochas-
tic losses. Policy-optimization (PO) methods directly op-
timize the policy and are widely used in RL due to their
faster performance and closed-form solutions. Recently,
Luo et al. (2021) achieved SoTA regret for PO methods
with adversarial losses and bandit feedback by introducing
dilated bonuses, which satisfy a dilated Bellman equation
and are added to the Q-function. However, their approach
cannot be applied here due to CURL’s non-linearity (the
expectation of the trajectory appears inside the objective
function) which invalidates the Bellman’s equations.

We achieve our results by computing local bonuses and
adding them to the (sub-)gradient of the objective func-
tion in each OMD instance as exploration bonuses. This
is more computationally efficient than model-optimistic ap-
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Table 1. Comparisons of SOTA finite-horizon tabular MDPs methods. MD stands for Mirror Descent, KL for Kullback-Leibler divergence
and T is defined in Eq. (4). MD + (+) indicates the regularization added to the MD iteration. MD on 7 indicates a policy optimization
approach in which MD iterations are performed on policies instead of state-action distributions (occupancy-measures).

. Optimal Closed-  Explo- No model Adversarial Bandit
Algorithm regretin T’ CURL form ration  assumption Losses feedback
(Jin et al., 2020) MD+KL X X UCRL Vv v v
(Moreno et al., 2024) MD +T v v v None X v X
(ours) MD +T' v v v Bonus v v
(Luo et al., 2021) MDonw V/ X v Bonus v v v

proaches and addresses the exploration issues in previous
online CURL methods. We believe our analysis is of in-
dependent interest, as it also offers a new way to study
RL approaches over occupancy measures, while providing
closed-form solutions. See Table 1 for comparisons.

2. Problem Formulation
2.1. Setting

For a finite set S, |S| represents its cardinality, while Ag
denotes the |S|-dimensional simplex. For all d € N we
denote [d] := {1,...,d}. Welet | - |, be the Ly norm,
and for all v := (vp)ne[n7> such that v, € RY*A we de-
fine |[v]|c0,1 1= sup; << [vn/1. We denote by | - |1, its
dual. Let IT := (A 4)**¥ denote the set of policies. We
consider an episodic MDP as introduced in Sec. 1. We
assume that the initial state-action pair of an agent is sam-
pled from a fixed distribution pg € Ay« 4 at the beginning
of each episode. At time step n € [IN], the agent moves
to a state x,, ~ pp(-|Zn_1,an_1), and chooses an action
an ~ 7 (:|2,) by means of a policy m, : X — A 4. When
the agent follows a policy 7 := (7, )ne[n] for an episode
in an environment described by the MDP with a transition
kernel p, this induces a state-action distribution, which we
denote by u™? := (7P )ne[n], that can be calculated re-
cursively for all (n,z,a) € [N] x X x A, by

Mgm(mv a) = /Lo(ﬂ% a)

prP(za) = D P (@ a )pa(ala’,d ), (alz). @)

(¢',a’)

We define the set of all state-action distribution sequences
satisfying the dynamics of the MDP as

M, {u e AV S (el ) = @
a’e A

Z pn (@' |2, a) pin—1(z,a) Vo' € X,Vn € [N]}
reX ,aeA

For any 1 € MY, , there is a strategy 7 such that ™ = p.
It suffices to take m,(a|z)ocu,(x,a) when the normal-

ization factor is non-zero, and arbitrarily defined other-
wise. Let ML* be the subset of ML~ where the cor-
responding policies 7 satisfy m,(alz) # 0 for all (x,a).
For any two probability transition kernels p, g, we define
L ME - x M%* — R such that, for all pu, " € MP, | x
MZ’O* with policies 7, 7/,

C(p, ') = 25:1 IE(oa’-,a)~#n(~) [log (:rgzm)] @

In the online extension of CURL, the ojl\arjective func-
tion for episode ¢ is denoted as " := > ' fi, where
ft @ Axya — Ris convex and L-Lipschitz with respect to
the | - ||; norm (hence F* is Lp-Lipschitz with respect to
the norm | - |51 with L := LN). The objective function
F is unknown to the learner in the start of episode t. In
this paper, we examine three types of objective function
feedback: Full-information: In this case, F? is fully dis-
closed to the learner at the end of episode ¢, and is treated
in Sec. 3.2. Bandit in RL: Here, F'*(u) := {{*, i), and the
learner observes the loss function only for the state-action
pairs visited, i.e., (¢}, (z},, al,)),e[n], Which is covered in
Sec. 4.1. Bandit in CURL: In this scenario, the learner only
has access to the objective function evaluated on the state-
action distribution sequence induced by the agent’s policy,
ie., Ft(/ﬂt’p), and is treated in Sec. 4.2.

The learner’s goal is to compute a sequence of strategies
(Wt)te[T], where T represents the total number of episodes,
that minimizes their total loss Ly := Z;T:l F'(u™ ). The
learner’s performance is evaluated by comparing it to any
policy m € (A4)**™ using the static regret:

Rp(n) := S FH(um P) — F(u™?). (5

We assume the probability transition kernel p is unknown
to the learner. Hence, to minimize its total loss, the learner
must optimize the objective function while simultaneously
learn the environment dynamics, facing an exploration-
exploitation dilemma. The interaction between the learner
and the environment proceeds in episodes. At each episode
t, the learner selects a policy nt, sends it to the agent, and
observes its trajectory o' := (zf,a,... 2%, a%;). The
learner uses this observation to compute an estimation of
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the probability transition kernel **!. At the end of episode

t, the learner receives one of the three feedbacks described
above for the objective function F*, and then calculates the
policy for the next episode, w**!, based on 7*,p'*!, and

the feedback on F*.

2.2. Preliminary Results

The results in this section are either known or extensions of
existing results needed for the analysis.

Since the probability transition kernel is unknown, we pro-
pose an online mirror descent (OMD) instance that opti-
mizes over the state-action distributions induced by the esti-
mated MDP as if it was the true model. This approach dif-
fers from the model-optimistic methods for RL discussed in
Sec. 1.1 where each iteration is performed over the union of
all state-action distribution sets induced by MDPs within a
confidence set around the estimated model, which results in
a computationally expensive optimization problem per itera-
tion. Lemma 2.1 presents an auxiliary result concerning the
quality of the state-action distribution sequence (u’ )ee[T]
when y! is the solution of Eq. (6), an OMD instance on
the set of state-action distributions induced by a transition
kernel ¢¢. It extends the upper bound result from (Moreno
et al., 2024) for OMD with smoothly Varying constraint
sets to any sequence of bounded vectors (z%),¢ e[r] and any
sequence of smootlhy varying transitions (¢")se(r7-

Lemma 2.1. Let (¢')e[r] be a sequence of probability
transition kernels and (zt)tE[T] a sequence of vectors in
RNXIXIIAL such that maxepry 281,00 < ¢ Initialize
mh(alx) := 1/| Al Fort e [T, let7* := Zqm'+ 5| A7}
be a smoothed version of the policy and compute iteratively

ptt e argmin (2t ) + D, g™ 7). (6)

t
NEMZO

Then, there is a T > 0 such that, for any sequence (l/t)te[T],

t .
= v™9 for a common policy T,

St = vty < O(CNA/Vr|Xlog(JA]) T log(T)),

T-1
> 1 a3 () i ol

n,xr,a

with vt

where Vip >

This lemma is proved in App. C. It is known (Moreno et al.,
2024) that for the divergence I' defined in Eq. (4), Eq. (6)
has a closed-form solution for the policy (see App. A.2).

Learning the model. Since the learner does not know
the probability transition kernel, it must estimate p from
the agents’ trajectories. Below we present the empirical
way for estimating the transition and a well-known re-
sult (Lem. 2.2) on its quality using Hoeffding’s inequal-

ity. Let N! (z,a) = 22;11 Tios —z,a5—a}» ML (2'|2,0) =

Zi;ll ]l{w;i+1=m”wi=$’ai=a}' The learner’s estimate for the
transition kernel at the end of episode ¢ — 1, to be used in
episode ¢, is as follows

Mt (2 |z, a)
max{1l, N} (z,a)}

N

Py (@']z,a) =

Lemma 2.2 (Lem. 17 of Jaksch et al., 2008). For any
0 < § < 1, with a probability of at least 1 — 0,

2|X|log (7|XH“§|NT)

max {1, N!_,(z,a)}

lpn (|2, @) = B, (|2, ) <

holds simultaneously for all (t,n,x,a) € [T]x[N]x X x A.

These results suffice for analyzing CURL with full-
information feedback (Sec. 3). For bandit feedback, more
refined tools are needed. In bandit RL, we need Bernstein’s
inequality to bound the L; distance (Lem. D.2). In bandit
CURL, we also need a bound on the Kullback-Leibler (KL)
divergence (Lem. E.3), which requires the Laplace (add-
one) estimator (Eq. (51)), as the KL of the empirical one
can be unbounded.

3. Exploration Bonus in CURL

We now present our novel approach for online CURL with
adversarial losses and unknown dynamics.

3.1. Limitations of previous approaches

The performance measure of a learner playing a sequence
of strategies (wt)te[T] is given by the static regret defined
in Eq. (5). Using the estimate of the probability transition
kernel p! computed by the learner, the static regret can be
further decomposed as follows

") — P )

=
=
2
Il
1=
o
=

w
I
-

)= i)

+
N

i
=

o+
Il
—_

t ~t

(VE ™ P, 5™ 7 — ™ P (8)

MH

H_
I
—_

MDP
RT

t ~t

T
+ D UVE (™), o — ),
t=1

policy
R

where the inequality comes from the convexity of F't. Let
& (z,a) = |pu(lz,a) — P, (:|z,a)|1. The term RYPP,
accounts for the error in estimating the MDP, and satisfies
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RMPP — O(+/T) with high probability. This is a classic
result (see Neu et al., 2012). We first show that

T N n—1

<SLY, Y Y Sl Pl (@ a). )

t=1n=11i=0 =z,a

MDP
Ry

Then, using Lem. 2.2 and that N} (x, a) increases with the
empirical version of the state-action distribution ,uzt P(x,a)
we achieve the final bound (see App. B.2). The second term,
R depends on the algorithm used to derive the poli-
cies. As mentioned in Sec. 1.1, model-optimistic approaches
could be adapted to CURL, but they are computationally
expensive. To achieve low complexity, we explore poten-
tial problems that might arise from the absence of explicit
exploration. We decompose this regret term as follows:

pO]le

Z<VFt Tr",ﬁt _ Mw,[;t>

policy/MD
Ry

T
nt,pt m,pt T
+ D UVF (P ), P — Py

policy/MDP
Ry

Assume the learner computes its policy sequence
(7")terr) by solving Eq. (6) with ¢*':=p'*! and

.= VF'(u™P"). Hence, from Lem. 2.1, RE"YMP —
O(WT ) (Lemmas A.3 and A.4 in the Appendix demonstrate
that Zt L P (e, a) — 5 ([a, @)1 < elog(T'). By hy-
(u”t’ﬁt)ﬂlm < L. Hence, we meet all the
assumptions from Lem. 2.1). But the term R%"™P" poses
a challenge. It can be decomposed as R}™P? in Eq. (9). How-
ever, the state-action dlstrlbutlon multlplymg & (z,a)
would either be pi] ¥ (z,a) or ] *  (z,a), and neither is
related to N} (z, a). Consequently, we do not have the same
convergence effect as RYPP. In fact, this term can become
prohibitively large. Without exploration, previous work us-
ing similar analysis (Moreno et al., 2024) only achieved
optimal regret under strong model assumptions, limiting its
applicability in realistic scenarios.

3.2. CURL with full-information feedback

We outline our idea to overcome previous limitations pre-
sented in Subsec. 3.1. Let b" := (b},),c[n] be a sequence of
vectors, to be properly defined later, such that b, € R¥*A,
We assume that 7’ is the policy inducing p* computed
as in Eq. (6) with ¢’ := 7%, but instead of considering
2t = VF! (7" as the (sub-)gradient of MD to be used
in episode ¢ + 1, we let 2t := VF!(u™ 2") — b, je.,

it = argmin {T(VFt(,u’Tt’ﬁt) — bt

St
peMi,

7u>+F(u,ﬁt)}-

If we assume that b? is such that, for all ¢ € [T] and for
(1™ ") — bt |1 0 < ¢, then by Lem. 2.1
and by addm% and subtracting the bonus vector, we would
have that R is bounded by

0(\/?) + Zt:1<btvlﬂt’ﬁt -

Let Cj:=+/2|X]log(|X[|A|NT/S),
n e {0,[N]}, (z,a) e X x A, let

Mﬂ—)ﬁf> + Rgglicy/MDP. (10)

and for all

n) Cs )
v/max {1, Ni(z,a)}

Note that [[b, |,o < LNCj, ensuring that the hypothesis of
Lem. 2.1 remains valid for this sequence. Decomposing
RINYMPP 45 we do for RYPP in Eq. (9), and then applying
Lem. 2.2, we get that for any § € (0, 1), with probability at
least 1 — &, R%"Y™PP is bounded by

bt (x,a) == L(N —

(1)

T N-1

LC —n) Hn g (z,0)
6; ; Z \/max{l Ni(z,a)}

T
2 LEAN S

By replacing Eq. (12) in Eq. (10), the additive prop-
erty in the decomposition allows us to cancel out the
problematic regret term REYMPP - Ag a result, we ob-
tain that R < O(VT) + Y.1_,(bt, ™ 7). All that re-
mains is to analyze the new term due to the added bonus,
ZtT:1<bt7 p™" ", which we do in Prop. 3.1.

Proposition 3.1. Ler (b'),c(r) be the bonus vector in
Eq. (11). For any &' € (0, 1), with probability 1 — 3¢’,

MoV ™ ) = O(LN?|X[P2\/JAIT).

With all the ingredients in place, we introduce our new
method, Bonus O-MD-CURL, in Alg. 1. The main result
is in Thm. 3.2 and its proof is in App. B.2. In terms of T'
and |.A|, our result matches the optimal one in RL from (Jin
et al., 2020), but we have additional factors of NV and \/W
that are due to using bonuses and dealing with convex RL.
Theorem 3.2. Running Alg. 1 for online CURL with un-
known transition kernel, full-information feedback, where
Ft .= 22[:1 It is convex and each [t is L-Lipschitz under
| - |1, ensures that, with probability at least 1 — 60 for any
0 € (0,1), the optimal choice of T achieves, for any 7 € 11,

Ry(m) = O(LN3|X2\/JAT).

12)

4. Bandit Feedback
4.1. Bandit feedback with bonus in RL

We generalize Alg. 1 to handle the RL case with bandit
feedback. Our aim is not to improve the existing algorithms
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Algorithm 1 Bonus O-MD-CURL (Full-information)

1: Input: number of episodes 7, initial policy 7! € II,
initial state-action distribution yy and state-action distri-
bution sequence p! = fi! = ™ P with pL(-|x,a) =
1/]X|, learning rate 7 > 0.

2: Imit.: V(n,x,a,2"), N} (z,a) = M}(z'|x,a) =0

3: fort=1,...,T do

4:  agent starts at (xf),al) ~ po(*)

5 forn=1,...,Ndo

6: Env. draws new state x!, ~ p,,(-|zf,_;,al_;)

7 Update counts

N (@ho1,ano1) = Ny (zho1,an-1) + 1

Miﬂ(xilwiq,aifl) = M,y (%h|zr1,an-1) + 1

8: Agent chooses an action af, ~ 7t (+|z%)
9:  end for
10:  Compute bonus sequence as in Eq. (11)
11:  Observe objective function F'
12:  Compute /ﬂt’ﬁt as in Eq. (2)
13:  Update transition estimate as in Eq. (7)
14:  Compute the 7'+ associated to the solution of Eq. 6
with 2! := —VF!(u™ ") + bt and ¢'+? = pi+1
15:  Compute #'! (Lem. 2.1), and fit*! := p& " 0"
16: end for

for bandit RL; rather, we show that our new methodology
and analysis for CURL achieves comparable results to the
SoTA in bandit RL. In this case, an adversary selects a
sequence of loss functions (€),ery, with £° := (€1,) e[
where ¢!, : X x A — [0,1], and the objective function
is given by Ft(u) := £t p) = ZT]Ll(Efl,,un}. Note that
now the gradient of F'* with respect to y is always equal
to £¢ due to the linearity of the objective function. Bandit
feedback in this setting implies that the learner observes the
loss function only for the state-action pairs visited by the
agent during each episode, i.e., (¢, (2, al,))ne[n] Where

(xf, ag)ne[ N7 s the agent’s trajectory.

We define Alg. 2 in App. D, a version of Bonus O-MD-
CURL where for each OMD update we take 2! := 7t — bt
with ¢t an importance-weighted estimator of ¢! defined
in Eq. (40) and b the bonus vector defined in Eq. (11).
Thm. 4.1 states that Alg. 2 achieves the regret bound of
O(VT) known to be the optimal for RL with bandit feed-
back (Jin et al., 2020). For the proof and for an overview of
approaches for bandit RL see App. D.

Theorem 4.1. Playing Alg. 2 for RL with adversarial losses
(€") e[y, unknown transition kernel, and bandit feedback,
obtains with high probability for any policy w € 11,

Rr(m) = O(N®|XP2\/|AIT + N3 X4 AVT).

4.2. CURL with bandit feedback

Returning back to the CURL framework, we now assume
that F*: Ayy.4 — [0, N] can be any convex, L-Lipschitz
function with respect to | - ||;. In contrast to Sec. 3, we
assume here that after executing a policy 7' we observe
F!(y™"7) instead of VF (1™ *). We will consider both
the case when the MDP is known in advance and when it
needs (as in previous sections) to be estimated progressively
from observed trajectories.

Main challenges. This problem can be broadly catego-
rized as a bandit convex optimization (BCO) problem. This
places us in a more challenging domain compared to the
bandit feedback setting in the standard RL problem, where
the gradient of the loss function is identical for any point
in (Axx4)" and is easier to estimate. Moreover, as a
BCO problem, the present setting still exhibits distinctive
challenges. One being the peculiar nature of our decision
set ML~ and how it impedes the efficacy of some stan-
dard gradient estimation techniques as we explain below.
Another issue arises when the MDP is not known as that in-
duces uncertainty over the true set of permissible occupancy
measures. This incomplete knowledge of the decision set
is atypical in the BCO literature and introduces multiple
sources of bias for any adopted method.

4.2.1. ENTROPIC REGULARIZATION METHOD

Our first approach is to extend our MD-based algorithm
from Sec. 3, supposing still that the MDP is not known.
Since the algorithm required knowledge of the gradient
VF!(u™ P), we propose to estimate it by querying F'
at a random perturbation of /ﬂtJ’, a standard approach
in the convex bandit literature popularized by Flaxman
et al. (2005). This method yields 7% regret under con-
vex and Lipschitz conditions, and is incapable of doing
better (Hu et al., 2016). Although more advanced algo-
rithms and analyses achieve T regret (Hazan & Li, 2016;
Bubeck et al., 2021; Fokkema et al., 2024), they are ar-
guably less practical, more complicated, and have worse
dimension dependence. For d € Z,, we denote by B¢
and S¢ the unit ball and sphere respectively in R?, and
by 14 € R? the vector with all entries equal to one. Let
k: S — R be a convex function, where S < R is a con-
vex set satisfying BY < S. Fix some § € (0,1). The
approach of Flaxman et al. (2005) relies on the observation
that @Euegd [k((1 — 0)x + du)u] ~ Vk(z). Hence,
Wk((l — 6)x + du)u (for some u uniformly sampled
from S%) can be used as a one-point stochastic surrogate for
the gradient. Applying this idea to our problem presents
several challenges. Mainly, MY, has an empty interior in
RNIXIIAl - This can be addressed, assuming for the mo-

ment that the kernel p is known, by defining a bijection
Api (Mﬂ0)7 — MP _ where (Mﬁo)* c RNIXI(AI-D) §g

Mo’
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a representation of the constraint set in a lower-dimensional
space where it is possible for its interior to be non-empty,
see App. E.1 for more details. Next, we need to specify a
(hyper)sphere that is contained in (Mﬁo)_, which would
allow us to use the aforementioned spherical estimation tech-
nique while remaining inside the feasible set of occupancy
measures. To guarantee the existence of such an object, we
rely on the following assumption (discussed further below).

Assumption 4.2. There exists a value € > 0 such that
pn(2’|z,a) > cforall z,2’ € X%, a € A, andn € [N].

Under this assumption, we show in App. E.2.1 that for
k= ¢g/(JA]—1++/]A|] — 1), it holds that KLnx)a-1) +
KBNIFIGAISD < (M)~ For any v & BMAI(AI-D,
define (V"7 := Ay (k1N x|(|.4]-1) + Kv). Motivated by the
preceding discussion, we use (a simple transformation of)

LON|X|(JA] = DFH((1 = 6)pt + 5<ut7p)ut

as a surrogate for VF*(u!), where u! is sampled uniformly
from SNIXIUAI=1) " What remains is to address the issue
that the true kernel p is unknown. Similarly to the full infor-
mation case, we compute an estimate Pt at each round to be
used in place of the true kernel, and we employ bonuses to
explore. One difference is that we rely on a slightly altered
transition kernel estimator (see App. E.2.2) to ensure that p*
too satisfies the condition of Asm. 4.2. Another discrepancy
to be accounted for in the analysis is that although we com-
pute 7t relying on p* (in particular, 7 is the policy induced
by (1—8)ut +6¢u"P' e Mﬁ;), we observe F*'(u™ P), the
evaluation of 7! in the true environment. This induces an
extra source of bias in the gradient estimator. We summa-
rize our approach in Alg. 3 in App. E.2.3, and prove the
following result in App. E.2.5:

Theorem 4.3. Under Asm. 4.2, Alg. 3 with a suitable tuning
of 7, 0, and (v )se[1) satisfies for any policy T € 11 that

E[Rr(m)] = O(VI(L + 1)/elX| A NOT™) .

The main shortcoming of this method is its reliance on the
restrictive Asm. 4.2, which also affects the regret guarantee
through its dependence on . This assumption is not neces-
sary to guarantee that (MY, )~ has a non-empty interior; it
suffices instead to assume that every state is reachable at ev-
ery step, as we do later. Enforcing Asm. 4.2 only serves as a
simple way to enable the construction of a sampling sphere
with a certain radius. One can construct a different sampling
sphere (or ellipsoid) without this assumption; nevertheless,
the magnitude of the gradient estimator (which is featured
in the current regret bound) would still scale with the re-
ciprocal of the radius of that sphere, the permissible values
for which depend on the structure of the MDP and can be
arbitrarily small. It seems then that the current approach
leads to an inevitable degradation of the bound subject to
the structure of the MDP.

4.2.2. SELF-CONCORDANT REGULARIZATION METHOD

Fortunately, we can adopt a more principled approach via
the use of self-concordant regularization, which is a com-
mon technique in bandit convex (and linear) optimization
(see, e.g., Abernethy et al., 2008; Saha & Tewari, 2011;
Hazan & Levy, 2014), and has been used for online learn-
ing in MDPs in different (linear) settings (Lee et al., 2020;
Cohen et al., 2021; Van der Hoeven et al., 2023). We
show in App. E.3 that (M, )~ is a convex polytope speci-
fied as the intersection of N|X||.A]| half-spaces. We define
Y: (MF, )~ — R as the standard logarithmic barrier for
(Mﬁo)* (see Nemirovski, 2004, Cor. 3.1.1) which is a ¥-
self-concordant barrier (see Nemirovski, 2004, Def. 3.1.1)
for (M, )~ with ¥ = N|X||A|. The second approach we
adopt here is to run mirror descent directly on (M%)~
as the decision set and take v, as the regularizer in place
of the entropic regularizer that induces I". Let ¢ belong to
the interior of (M7, )=, which we assume is not empty.
Property I in (Nemirovski, 2004, Sec. 2.2) implies that
§+ (V2 (€)™ PBNS(A=1 < (MP, )~ . Hence, we can
construct an ellipsoid—entirely contained in (M%)~ —
around any point in int(M% )~. Let &* be the output of
mirror descent at round ¢ and Uy = (V24(&))~">. We
can then use the following as a surrogate for the gradient of
F'o A, at £ (see also Saha & Tewari, 2011):

LD NIX|(JA] = 1)F (A (€ + 0Uut)) Uy u!

with u! again sampled uniformly from SNI¥I(I=1) The
eigenvalues of U, correspond to the lengths of the semi-axes
of the ellipsoid used at round ¢, which could be arbitrarily
small and lead again to the gradient surrogate having large
magnitude. However, thanks to the relationship between &°
and Uy, a local norm analysis of mirror descent (see, e.g.,
Lem. 6.16 in Orabona, 2023) absolves the regret of any
dependence on the properties of U;. Unfortunately, due
to technical barriers, this log-barrier-based approach is not
readily extendable to the setting where the decision set can
change over time (in particular, it is not clear whether an
analogue for Lem. 2.1 can hold in this case). Hence, we
restrict its application only to the case when the MDP is
known, see Alg. 4 in App. E.3. We state next a regret bound
for this algorithm (proved in App. E.3.2), which requires the
following less restrictive assumption in place of Asm. 4.2.

Assumption 4.4. For every state x € X and step n € [N],
there exists a policy 7 such that >} _ , u7n?(x, a) > 0.

Note that this can be imposed without loss of generality
since the MDP is known; defining X,, € X" as the subset
of states reachable at step n, one can represent occupancy
measures as sequences of distributions in (A x, « A)ne[ N]-
Theorem 4.5. Under Asm. 4.4, Alg. 4 with a suitable tuning
of T and ¢ satisfies for any policy 7 € 11 that

E[Rr(r)] = O(VIN"* (|X||AIT)™).
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Figure 1. [left] Initial agent distribution; [middle] The three targets
from multi-objectives; [right] The constrained MDP (reward in
yellow, constraints in blue).

Though holding only for the known MDP case, this bound
maintains the 7%* rate of Thm. 4.3 while eliminating its
reliance on Asm. 4.2 and its undesirable dependence on
the MDP’s structure. We leave extending this result to un-
known MDPs and designing practical approaches enjoying
the optimal /7 rate for future work.

S. Experiments

We evaluate Bonus O-MD-CURL on the multi-objective
and constrained MDP tasks from (Geist et al., 2022), which
use fixed objective functions and fixed probability kernels
across time steps. Adversarial and bandit MDPs are harder
to implement due to challenges in finding optimal stationary
policies, and there is a a lack of experimental validation in
the literature. We focus on evaluating how well the additive
bonus helps the algorithm to learn the environment. We
also compare it to Greedy MD-CURL from (Moreno et al.,
2024). The state space is an 11 x 11 four-room grid world,
with a single door connecting adjacent rooms. The agent can
choose to stay still or move right, left, up, or down, as long as
there are no walls blocking the path: z,,+1 = x,, + a,, + &5,
The external noise ¢, is a perturbation that can move the
agent to a neighboring state with some probability. The
initial distribution is a Dirac delta at the upper left corner of
the grid, as in Fig. 1 [left]. We take NV = 40, 7 = 0.01, and
5 repetitions per experiment.

Multi-objectives: The goal is to concentrate the distribu-
tion on three targets by the final step [V, as in Fig. 1 [mid-
dle]. The objective function is defined as f,(u>?) :=
=30 (1 = (upP,eF))?, where eF e RI*I s a vec-
tor with a 1 at the target state and O elsewhere. Con-
strained MDPs: The goal is to concentrate the state dis-
tribution on the yellow target in Fig. 1 [right] while avoid-
ing the constraint states in blue. The objective function
is defined as f,,(u7P) := —{r, uTP) + ({uTP, c))?, where
r,CE R‘fl XAl Here, r and c are zero everywhere except
at the target and constraint states respectively. For the
Multi-objective task, Fig. 2 displays the state distribution
at the final time step after 50 iterations for Bonus O-MD-
CURL [up, left], and Greedy MD-CURL [up,right], and
plot the log-loss [down,left] and regret [down,right] after
1000 iterations. We see that Bonus O-MD-CURL reaches

300 +

1004 -|
200 +

100-3
100 A

—— Greedy MD-CURL
10°? 4 — Bonus O-MD-CURL

— Greedy MD-CURL
— Bonus O-MD-CURL

T T T T T T T T T
10° 10t 10° 10% 0 200 400 600 800
Tteration

T
1,000

Iteration

Figure 2. Multi-objective: distribution at N = 40 after 50 iters.
for Bonus O-MD-CURL [up,left], Greedy MD-CURL [up,right];
log-loss [down,left] and regret [down,right] for 10° iters.

6,000 -
—— Greedy MD-CURL

— Bonus O-MD-CURL
4,000 -
10t 4

2,000 4

1005

—— Greedy MD-CURL
—Bonus O-MD-CURL

1006 -|

T T T T T
0 200 400 600 800

Iteration

T
1(‘1” 1(‘)‘ 1(‘!2 1(‘)‘ 1,000

Tteration
Figure 3. Constrained MDP after 10? iters.: sum distributions over
all time steps n € [40] at [up,left]; distribution at the last time step
N = 40 for Bonus O-MD-CURL [up,center], and Greedy MD-
CURL [up,right]; the log-loss [down, left] and regret [down,right].

the targets much faster than Greedy MD-CURL. As for
the Constrained MDP task, Fig. 3 displays the log-sum
of all state distributions for all time steps n € [40] at it-
eration 1000 for Bonus O-MD-CURL [up,left]; the state
distribution at the last time step n = 40 after 1000 iter-
ations for Bonus O-MD-CURL [up,center], and Greedy
MD-CURL [up,right]; and the log-loss [down,left] and re-
gret [down,right]. In this case, Greedy MD-CURL fails to
reach the target state even after 1000 iterations, while Bonus
O-MD-CURL successfully reaches the target state avoiding
constrained states to minimize cost thanks to the additive
bonuses. These examples empirically demonstrate the value
of the additive bonus in tasks requiring exploration.
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A. Auxiliary results
A.1. Auxiliary lemmas

Lemma A.l. For0 <6 < 1,
n—1

T N n—
S22 Sl P a)lpis (v a) = Byl a)

t=1n=11i=0 z,a

< 3|X|N2\/2|A|Tlog (W) +2|X|N2y 2T log (%)

with probability at least 1 — 26.

Proof. Let &l (z,a) := ||pn(-|z, a) — Pt (*|z,a)|1. We denote by o x!  al),crn1 the trajectory of the agent at episode

t when playing policy 7*. Let ﬁ;;tﬁp (z,a) == Lt at)=(x,a)} e the emplncal state-action distribution computed from the
agent’s trajectory. We consider the following decomposition:

T N n—1 . T N n—1 .

’ ST, t
IPIPIPW AL CHOLRCOEDIPNPIPW IO RICHD)
t=1n=1 =0 z,a t=1n=1i=0 z,a

(€3]
1

Z Fin e i (%a))ﬁfﬂ(x,a).

0zx,a

n

Mz

)

=1ln

~+

14

(2)

Term (1) analysis. We start by analysing the first term. Using Lem. 2.2, we have that for § € (0, 1), with probability 1 — d,

T N n— Aﬂp XIIAINT = ft’pxa
=3 5 S St < et (KANT) $1 5 st

=0x

Using Lem. 19 from (Jaksch et al., 2008), we have that for all ¢ € [N] and (x,a) € X x A,

s arr T,a
2, \/m::)i{l (N}(i a7 (V2 + 14/ N (2, a).

Therefore, using Jensen’s inequality and that 3, ) NF(z,a) = T for all i € [N], we have that

T N n—1 ~mt.p N
a7 (2, a) o)
t:Zlngli;Or,a \/max{l,Nf(w,a)} 1; 1i=0
N n-—1 (13)
Z Z VIXIAT
< 3N2 ||| A|T.
Substituting this inequality into the upper bound for term (1) yields
X||AINT
(1) < \/2|X| log (”?)31@ \X|| AT
(14)

- o Ao (AT,

12
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Term (2) analysis. We now analyse the second term. Let F! := o(o',...,0'™!) be the filtration generated by the
trajectories of the agent from the first episode, up to the end of eplsode t—1. Note that &, (x, a) is F* measurable, as it
only depends on observations up to episode ¢ — 1. Therefore,

E[eb . (x, a)AT P(x, a)|FL] = € 1 (x, a)B[AL P (z,a)|FL] = &1y (2, a)ul P (z, a).

For all n € [N], let M? = 0 and for all t € [T,
. Z Z ,u'n :un (‘r’a))g'rsz-kl(xaa)'
s=1lz,a

From the observation above, (Mytl)te[T] is a martingale sequence with respect to the filtration F*. Furthermore, as by
definition |}, | (2, a)| < 2,

M} — MY <)
reX

N (uz P, a) — G P(w,a))€l 4 (2, a)

acA

<2/x).

Therefore, by Azuma-Hoeffding, we have that for any € > 0,

g2

Applying the union bound on all n € [ N], we then have that for any ¢ € (0, 1), with probability at least 1 — J,
N
MT < 2|X|\[2T log (?)

Substituting this inequality into term (2) and summing over n € [N] and i € [n — 1], we obtain, with probability at least

1 — 4, that
; < 2|X| N2 [2T log (%) (15)

Final step. Combining the upper bounds for term (1) from Eq. (14) and term (2) from Eq. (15), we obtain, with probability
at least 1 — 24, that
n—1

T N n—

¢ X NT N
30N S e ) < 3|X|N2\/2|A|Tlog () vy oo ().
t=1n=11i=0 z,a

In=11

holds simultaneously for all n € [N].

HMZ

concluding the proof.

Lemma A.2. Forany(0 < § < 1,

T N un,pxa) ) N
t;;o( _HZW} W+|X|Nm

holds with probability at least 1 — 6.

Proof. Recall that we denote by (zt,, n)ne{O [nv]) the trajectory of the agent during episode ¢, when playing policy wt, and
that we define by i™ ?(z,a) := L(2t at)=(x,a)} as the empirical state-action distribution computed from the trajectory of

13
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the agent. We consider the following decomposition:

T N . ! N—n) it P (z, a)
Z Z 2 \/max{l Nt (z,a) 2 2 \/max{l Ni(z,a)}

t=1n=0

Term (1) analysis. Using the same decomposition of term (1) of Lem. A.1 in Eq. (13) we have that

3Dy —-n o) N2/ X||A|T.
MIPHY anax{lm a7 < vieA

(16)

a7

Term (2) analysis. The analysis of term (2) follows a similar approach to the analysis of term (2) in Lem. A.1, with the
key difference being that, instead of carrying the term related to the difference between the true probability transition and

the estimated one, we now have the term 1/4/max {1, N/ (z,a)}.

Let 7! := o (0%, ...,0'"1) be the filtration generated by the trajectories of the agent from the first episode, up to the end of
episode ¢ — 1. Note that 1/4/max {1, Ni(z,a)} is F* measurable, as it only depends from observations of time step n up

to episode ¢t — 1. Therefore,

E[1/v/max {1, N} (z, a)}if, *(w, a)| FL] = 1/+/max {1, N},(z, a)}u], (2, a).

For all n € [N], let MY = 0 and for all t € [T7],

Z Zun P(w,a) - iy, P(x,))1/y/max {1, Ni(z,a)}.

From the observation above, (Mfl)tem is a martingale sequence with respect to the filtration F¢. Furthermore, as by

definition |1/4/max {1, N (z,a)}| < 1,

ML =M< (N =n) Y| Y (uF #(2,0) — 3% P (2,a))EL (2, a)
X 'ac A

Therefore, by Azuma-Hoeffding, we have that for any ¢ > 0,

2
P(MI >¢) < s |-
17 =) <o (g —er)

Applying the union bound on all n € [ N], we then have that for any ¢ € (0, 1), with probability at least 1 — 0,

MT < |X|Ny /2T log (%)

Summing over n € [N], we have that with probability at least 1 — J,

_ i M7 < |X|N?y /2T log (%)

n=0

14

< (N —n)|X].

(18)
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Joining terms (1) and (2). To conclude, we replace the final upper bounds of the terms (1) and (2) of Eq. (17) and (18)
respectively in the decomposition of Eq. (16), and we obtain that, for any ¢ € (0, 1), with probability at least 1 — 4,

pzP(x,a) 2 2 N
g Z:] —n 2 ey < 3N2V/|X||AT + |X|N m,

concluding the proof. O
Lemma A.3. Foralln € [N), (z,a,2') € X x A x X, and t € [T, let p', ;| (z|x, a) be defined as in Eq. (7). Hence,

Lot —2,at,=a}

max{l,NﬁH(x,a)}'

1B (s a) = Py (o, a) |1 <

Proof. From the definition of the estimator p*, we have that
1
max{1, No*(z,a)}

ﬁ:f-&-ll ($/|$7 a) =

(N} (2, a)ply sy (2|2, a) + ]l{xﬁl+1=x’,m;=z,a§,/=a})'

Therefore,
1
AL (o At / _ ot / t+1 _art
|pn+1( |x,a) _pn+l(x |$7a)| = max{17N£+1(z,a)}’]l{x:”*'l:m”w;:%ai:a} pn+1($ |J),a)(Nn (xva) Nn(mva)))
1

~t /
" max{l, N.V (2 a)}‘]l{w:m:x'wz:naz:a} = D1 (@', 0)Uat =z 0t —a) |
b) b

Summing over 2’ € X’ we then have that

ot =r.at=a)
max{1, N;"(z,a)}’

1551 (@) = By (o, a) 1 <

concluding the proof.
O

Lemma A4. For (n,z,a) € [N]x X x A, let (¢"),e[] be a sequence of probability transition kernels with ¢* := (q},)ne[n]
such that
C]l{ri | =%,a;,_;=a}

t+1
¢ max {1, N/} (z,a)}

lant" (e, a) — g (-l a) |1 <

for some constant ¢ > 0. Then,

T
2 gt Claya) = g, (s a) |y < eclog(T).
t=1
Proof. We have that
NT+1
i W L (e, a)] i S jw)l il log(eT) < eclog(T)
z,a) z,a)|1 <c =c - <c) - <clog(e < eclog(T).
t=1 maX{l Nvtztll(x7a)} t=1 t t=1 t

O

Lemma A.S5. Let (qt)te[T] be a sequence of probability transition kernels, i.e., q* := (qfl)ne[ N1 such that for any state-action

pair (x,a) and any step n € [N, Zt g Gz, a) — ¢ (|lz,a) |1 < clog(T) for some constant ¢ > 0. Then, for any
sequence of policies (") e[r7,

T
2,1k T < el X AN log(T).
While for a fixed policy T,

T
S = 5 o < XN log(T).
t=1

15
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Proof. Using Lem. B.1 we obtain that

T
at gttt t t
Z i g < 3 sup 33T (@ a)lal ] (e a) — gl Gl a) s

T N-1
=3 2 D (@ @)llg e a) — gl a) o
t=1 n=0 z,a
N—1 T
Dl Cla,a) = ¢ (o, a) 1 < | X]A[N log(T).
n=0 z,at=1
While for a fixed policy ,
L t+1 t T N_l
D™t g o < 0TS (2, 0) | gL (e, a) — gl gy (s a) |
t=1 t=1n=0 z,a
T 1

M7

3

=1n
N-1
<c Y Y ma(alz)log(T) = ¢|X|Nlog(T).

n=0 z,a

mn(ala) g1 (e, a) = gy (2, a)

~

0 x,a

O

Lemma A.6. Consider a sequence of policies (m*) e[|, and define a smoothed version of each policy 7* for all t € [T as
ati=(1—ay)mt + ‘%, where o € (0,1). Let p and q be two probability transition kernels, denoted as p := (pn)ne[N]
and q := (qn)ne[n)> Tespectively. Therefore, for all t € [T],

N—
t ~t
I — ™ o1 < Z ZMZ P(@,0)|pi1(|lz,a) — gis1 ([, a)|1 + 2Nay.
i=0

Proof. See Lem. D.4 from (Moreno et al., 2024). O]

A.2. Building a closed-form solution for each OMD iteration

In this subsection we argue that the MD optimization problem solved at each iteration in Lem. 2.1 has a closed-form solution.
Define the convex function G*(u) := 7¢zt, uy + T'(, zt), for 7 > 0.

Optimizing a convex objective function over policies is equivalent to optimizing it over state-action distributions in M
Therefore, the optimization problem solved in Lem. 2.1 over the state-action distributions induced by ¢'*1 is equlvalent to
minimizing the same function over the space of policies:

Gl(p) = in  Gi(umrT). 19
R "
%/_/

(2): state-action problem (4): policy problem

In Thm. 4.1 of (Moreno et al., 2024), it is shown that for each episode ¢ € [T'], an optimal policy for the problem

min Gt(;ﬂ’qtﬂ) =7y + T(p, i), (20

TFG(AA)XXN

defined in Eq. (19), denoted by 7t*!, can be computed using an auxiliary sequence of functions (Q%)ne[ ~1» Where
Q! : X x A — R. The sequence starts with Q% (z,a) = —24 (z,a), and for n € {N, ..., 1}, the following recursion is

16
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used:
t+1 . 7~1'fz+1(a|9€) exXp (TQ;H(% a))
ntfh(afe) = <o _
a’ 7rn+1( |IE) exp (TQn+1(xa a ))
_ 1 7_‘_t+1 (a/|:E/) B
Q' (r,a) = (,a) + qu:fl "z, a wajﬂl [— —log (%) + QfLJrl(m’,a’)].
T 741 (@ |2)

The core idea of the proof is to show that, due to the specific divergence used (defined in Eq. (4)), Eq. (20) can be solved
using dynamic programming. For further details, the reader is referred to Appendix B of (Moreno et al., 2024). A similar
result was also obtained by (Cammardella et al., 2023), though they approached the optimization problem using Lagrangian
multipliers instead of dynamic programming.

Problem (¢) of Eq. (19) is convex, and the theoretical analysis are given in Lem. 2.1. Thanks to the equivalence between
problems () and (7¢) in Eq. (19), we can use the analysis of problem () to provide theoretical guarantees for the closed-form
solution policy of problem (7).

B. Missing results and proofs

Lemma B.1. For any strategy ™ € (A )<Y, for any two probability kernels p = (Pn)nern) and ¢ = (Gn)ne[N] Such that
Prsqn i X X Ax X — [0,1], and n € [N],

n—1
< ) DM@, a)|pisa (, @) = i ()

1=0 z,a

lpm® — b1

Proof. From the definition of a state-action distribution sequence induced by a policy 7 in a probability kernel p in Eq. (2),
we have that for all (z,a) € X x Aand n € [N],

punP(z, a) Z pn'?y (2 a")py (22!, a’ ) (a)z).

x/,a’

Thus,

lu? =l = > (2, a) — py?(z, a)
x,a

= 3 |un? (@ palele ) — 1 (@ Vg (el @) [ (al)

z,a z’,a’

= Z |y (@ Ypp (|2 ') — ppy (2 @ )gn (]2, d) |
r xz’a

=20 2 (@ dpa(zle’ ') — pi?y (2, al)gn (el o)
x z’a’

+ pn 1 (@, 0 )gn (]2’ ) — p? (27, ) g (]2, o)

< 2P d)palesa) = qu(Cla’s )+ ) Jun (el a') = prty (o d)]
z’,a’ z',a

= 2t @ d)pa |2 @) = ga(Cla’sa) o+ ety = s
z’,a’

— oY1 = 0, by induction we get that

n—1
U< 3N urP @, @) pis (ol @) = qisa (' a)]s.

1=0 z’/,a’

(I
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B.1. Proof of Prop. 3.1

Proof. In the analysis, we explicitly write the term n = 0 separately from the other n € [ N]. We begin with the following
decomposition:

T T T T T

t ~t t ~t t t
DI Py 4 Y b oy = Db T — ™ Py Y P 4+ > b, o)
t=1 t=1 t=1 t=1 t=1

) (2)

Term (1) analysis. Using Holder’s inequality, we have that

T N .
D)< 03 Ikl = P
t=1n=1

From the definition of the bonus sequence, we have that for all n € [N], |0} [s < L(N — n)Cjs. Hence,

T N n—1
LCs Y, DV (N —=n) Y > uf P(w,a)|pisa |z, a) = Pl (|2, )
t=1n=1 1=0 z,a

< LCs|X|N? [3\/2A|T10g <|X|§|NT> N QM]

where the first inequality comes from Lem. B.1, and the second inequality is achieved for any § € (0, 1), with probability at
least 1 — 29, using Lem. A.1.

Term (2) analysis. Using the definition of the bonus sequence in equation (11), and recalling that the initial state-action
distribution p is always the same, we have that, for any 6 € (0, 1), with probability at least 1 — §,

B T N . a)
a LCé; g Z \/max{l Nt(ac a)}

where the inequality comes from Lem. A.2.

Joining the upper bounds in term (1) and (2). Putting both upper bounds together we get that for any J € (0, 1), with
probability at least 1 — 34, and from the definition of Cj,

T T
Z<bt,m"ﬁ">+Z<ba,uo><w§X|N3[3\/2|A|Tlog(X”““'NT) 22T log (¥ ]
t=1 t=1

+LC(9N2[3«/|X|AT+|X|«/2Tlog )]

= 0<LN3X|3/2W10g ('X”“;NT».

B.2. Proof of Thm. 3.2 (Main result)

For proving the main result we join together all the pieces we presented in the main paper and the appendix.

18



Online Episodic Convex Reinforcement Learning

Proof. We start by decomposing the regret and using the convexity of the objective function obtaining that

T
FH (W P) = FH (™) + ) FH (™7 = F' (™)
t=1

=
=N
2

I
1~

-+
Il
—

<

1=

T
t t t -t t ~t t ~t
<VFt(,u” ,p)’uw PP >+ 2 <VFt(,u” D )Mﬂ D Mmp>.
t=1

-+
Il
—

R¥DP R;;)llcy
We analyse each term separately:

Analysis of R}PP.  We begin by analyzing the term RY°, which represents the cost incurred due to not knowing the true
probability kernel. First, we apply Hoeffding’s inequality, and the fact that f is L-Lipschitz with respect to the norm | - ||;.
Following, we apply Lem. B.1, obtaining that

T N
t t t ot
RYPP <Y Y IV P ollun * = pp P

We can now apply Lem. A.1 to obtain that for any § € (0, 1), with probability at least 1 — 24,

RMPP < L3X|N2\/2|A|Tlog (W) + L2|X| N2y [2T log (%) 21)

Analysis of RV, To analyse R’ we further decompose it as

T T T
RIS = S UVEN ) =™ P = P 5 0 P — P SV (), P — ),
t=1 t=1 t=1
R%:Jacry/]\/lD R],)I?licylbonus

where recall that b* := (b,),,c[n] is the bonus vector defined in Eq. (11).
Analysis of R"T"“cy ™MD e begin by addressing the term that accounts for the regret incurred by using online Mirror
Descent with changing constraint sets.

From Lemmas A.3 and A .4, we know that the probability sequence (p") e[y satisfies the condition that ZZ;I [Pt —pt |1 <
clog(T) for ¢ = e. Additionally, at each time step ¢, since F"* is Lp-Lipschitz with respect to the norm | - |« 1, we have
[VF!(u)]|1,0 < Lr = LN for any state-action distribution x. From the definition of the bonus vector, we also have that
[6%]1,00 < LN?Cs. Consequently, [V F!(u) — bt|1,0 < 2LN2Cj. Therefore, as we compute p! ™1 by solving

ptt = argmin {T<VFt(u”t’ﬁt) — b’ + D, ﬂt)},

pt+1
D
HEM,

by applying Lem. 2.1 with v* := /ﬂ’ﬁt, ¢ = 2LN?Cy, and the sequence of probability transition kernels (ﬁt)te[T], we

obtain that for the optimal parameter 7 = CQLT, where

b:= N(log(T) <6|XHA| + 4) + log(|A]) + 2Ne|X|log(T)? 10g(|A)),
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and recalling that Cj := \/2|X\ log (|X||AINT/S),

Rgﬁ)licy/MD < 2<\/ﬁ + CNC‘X| IOg(T)

< 2LN2\/2|X| log <X”A|TN) (2VbT + Nlog(T)e|X|)

5 22)

- O(LN2|X|\/Tlog (W'?'NT) <\/N|A\ log(T) + N+/log(JA]) log(T))>.

Analysis of REMYP™S We start by analysing the second term of the sum in R%""™™ For any § € (0,1), with

probability at least 1 — §, we have that

IV £ (™) ol = ™

=
=

T
DUVEH (TP ), P — ) <
t=1

~
Il
—
3
Il

n—1

N

h
Nl
M=~

t=1n=1i=0
T N n-—1 . 05
<L " (z,a)
;7;1 =0 xZa V/max{1, N} (z,a)}

P

a) G
7 y/max{1, N (z,a)}

I
h
1=
=
|
S
]
=
=3
S|
B

Il
—
3
Il
o
8
S}

I
gl

T
(O, 1P+ Y (6, o)
t=1

H
Il

1

where the first inequality follows from Holder’s inequality, the second from the fact that f! is L-Lipschitz with
respect to the norm || - |; and Lem. B.1, the third from the concentration bound in Lem. 2.2 where we define

Cs = \/ 2|X|log (|X||.A|NT/S), and the last equality comes from the definition of the bonus vector in Eq. (11).

Replacing it at the RE*"Y*™ term we have that

T T
Rgs)hcy/bonus _ <bt, Mﬂt,ﬁ‘ _ Mﬂ-,ﬁ'> + Z<VFt(Mﬂ',ﬁt)7M7r,;ﬁt _ Mﬂ',p>
= t=1

t=1
T t -t ~t r ~t r

< D TP = N P 4+ b o)
t=1 t=1 t=1

)
ok

T
<bta :uﬂ”p’> + Z<b6a,u0>
t=1

-
Il

1

Lastly, we apply Prop. 3.1 to achieve that, for any ¢ € (0, 1), with probability at least 1 — 40,

T T
icyfbonus X||AINT
RETesoms < NG )+ N o) = O(LN3X|3/2 | AT log (' I 5' )) (23)
t=1 t=1

Final upper bound on R2™™Y.  Joining the upper bounds on RP"Y™P and RP"YP™S from Eq.s (22) and (23) respectively,
we achieve that for any § € (0, 1), with probability at least 1 — 40, ignoring logarithmic terms,

R < O(LN®|X P12/ AT). (24)
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Joining the upper bounds on RYP? and on R**", Note that the terms in the upper bound on R2" from Eq. (24)
dominate those in the upper bound on RYPP from Eq. (21). Therefore, when combining both terms to complete the upper
bound on the regret, we obtain that, with probability 1 — 64,

Ry(m) < O(LN3|XP2\/|A|T),

concluding the proof.

C. Proof of Lem. 2.1: Online Mirror Descent with varying constraint sets

Before stating the proof we recall a few results from Bregman divergences and in particular the divergence I' defined in
Eq. (4) that are used throughout the proof.

To simplify notation, for any probability measure 7 € A g, where E is any finite space, we define the neg-entropy function,
using the convention that 0log(0) = 0, as ¢(n) := >, .5 1(2) logn(x). Forany pi := (fin)ne[n] € (Axxa)?, we define
pn() = e in(x,a) for all n € [N] and = € X, representing the marginal distribution over the state space. The
function inducing the divergence I, defined in Eq. (4), is given by

N

N
D) =D d(un) = Y Slpn)- (25)

n=1 n=1

By definition of a Bregman divergence, for any two probability transition kernels p, g, for all € M% ~and ' € M,
where M* is the subset of M where the corresponding policies 7 satisfy 7 (alx) # 0, we then have that

D, p') = () — (') = V'), o — 1) (26)

Additionally, for any probability transition kernel p, the function ¢ is 1-strongly convex with respect to || - [0 1 within MP
(see Thm. 4.1 from (Moreno et al., 2024)). Consequently, a consequence from a known property of Bregman divergences

(Shalev-Shwartz, 2012) is that, for any 1 € M, and e Mﬁ’o*,

FWWUZQW*M%¢ 27)
Lemma. Let (qt>te[T] be a sequence of probability transition kernels, and (zt)te[T] a sequence of vectors in RV *|¥[xIAl
such that |25 < ¢ for all t € [T]. Initialize 7). (a|z) := 1/|A| as the uniform policy. For every t € [T, let
7t = (1 — )7’ + ay| A| ™" be a smoothed version of the policy with a; := 1/(t + 1) and i* := p® 4", For each t € [T,
compute iteratively
e argmin 72 ) + T(p, ). (28)

t+1
q
MEMHO

ut

Hence, there is a 7 > 0 such that, for any sequence (l/t)te[T], with vt := ™" for a common policy 7,

S (et b — vty < O(CNA/ Ve X log (JA]) T log(T)),

T—-1
where VT =1+ max(n,x’a) Zt:l Hq%(‘l‘, CL) - qurl("'ra a) Hl

Proof. Throughout this proof, for all ¢ € [T'] we denote by ' the policy inducing 4!, meaning that ;! := ;™ 4" and

fit :== p™9". We assume here that max(,, . o) Y, ||z, @) — ¢4 (-|z,a) |1 < clog(T) for c a constant, as this is the

case for all the transition estimators we use to obtain the main results of the article.

As MZ;“ is a convex set (only linear constraints), the optimality conditions and the definition of a Bregman divergence in
: t+1 q“’1

Eq. (26) imply that for all v'*! € MY ",

<th + vw(ut-ﬁ-l) _ Vw(gt% Vt+1 _ ut+1> > 0.
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Re-arranging the terms and using the three points inequality for Bregman divergences (Bubeck, 2015) we get that,
TP =T V(') = VO (1), 0T = D = T A = D ) = T A,

Therefore, by adding and subtracting 7(z%, u* — v/ on the left-hand side,

T<Zt7ﬂt+1 - Vt+1> + T<Zt7/1't - Vt> - T<Zt7Mt - Vt> < ( t+17ﬂt) F( t+17#t+1) - F(/‘t+17/1t)
— T<Zt,,ut _ I/t> < T<Zt,Vt+1 _ l/t> + T<Zt,,u,t _ ‘ut+1> + F(l/tJrl,[Lt) _ F(Vt+1’ut+1> _ F(lut+1,ﬂt).

Then, by summing over ¢ € [T'], we obtain that

T T T
1 N 1 -
Z<Zt,,ut - l/ ; 2 7'<Zt,‘LLt _ Nt+1> _ F(ﬂt+1 t ; Z t+1 t F(Vt+1,ut+1)]
i—1 =1
., A B (29)
+ Z<zt, Ity
N —
C

The term A arises due to our lack of knowledge of 2! at the beginning of episode ¢ for all episodes (adversarial losses
hypothesis). To address this, we employ Young’s inequality and the strong convexity of I". For the term B, in the classic
Online Mirror Descent proof (Shalev-Shwartz, 2012), where the set of constraints is fixed, the sum of the differences
between the Bregman divergences telescopes (as would be the case with a fixed ). However, because we are dealing with
time-varying constraint sets, this telescoping effect does not occur in our situation. We will now proceed to derive an upper
bound for each term, starting with term C' that is straightforward.

Step 0: upper bound on C. Applying Holder’s inequality, Lem. A.5 with a fixed policy 7, and the hypothesis that
[2* 00 < G

[ — V.1 < Ce|X|N log(T). (30)

T T
C = Z(zt,ytﬂ -y < Z |
t=1 t=1

Step 1: upper bound on B. We now analyse the second term of the sum in Eq. (29). To make the Bregman divergence
terms telescope we add and subtract T'(v?, ut) — T'(v%, fit), obtaining

D=

F( t+1"at) F(VtJrl t+1 Z F t+1 ~t F(l/t,ﬁt) + Z F(l/t,'[tt) _ F(Vt,/,Lt)

t=1 t=1 t=1

. (D)
+ Z F(Vt,,u,t) _ F(I/tJrl,,utJrl) )

(i)

We analyze each term. Using the definition of a Bregman divergence induced by v in Eq. (26) we get that

D) = (") = (Ve ("), v = i = (') + (A" + (Ve (A, v - i

=
I
1=

~
Il
—

[
=

QZJ(I/H_I) + Z<v,¢] l/ _ Vt+1>

~
Il
—

) + Z IV (") |Loolvt = v o,
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where in the last inequality we use the telescoping nature of the first term and applied Holder’s inequality to the second
term. Recall that for v := (vy) e[y such that v,, € RY*A, we defined [[v]o,1 1= Sup,e(ng [vnf1. We now also define

[1,00 1= sup,{|{w, v, |v]o,1 <1} = ZnN:1 sup, , |wn (7, a)| as the respective dual norm.

Jw
With our choice of Bregman divergence, and given that
7= (1 — ag)n’ + ati,
Al
foreachn € [N], (z,a) € X x A, |[V(i')(n,z,a)| = |log(7t (a|z))| < log(|A|/a).

t

From the Lemma hypothesis, there is a common policy 7 such that for all ¢ € [T'], V' := v™4". Hence, from the result

above,

T
(i) < —p(') + > Nlog <|A > e e P

t=1 Q

<)+ Nog ()i tog(r)

minge[r) o
where the last inequality comes from Lem. A.5 with a fixed 7.

As for the second term, using our definition of I', we obtain that

(i) = 3, > v (w,a) log <ZZ(Z:?> = 2 v () log <Z?EZI§;>

t=1n,x,a n,r,a n

. L quf' T, a)lo Wfb(a|x)
_Z 7 w (, )1g<(1_at)7r;(a|x)+at/|v4>

t=1n,x,a
T T
<N DY i(—log(l— ) <2N ) ay,
t=1 t=1

where the last inequality is valid if 0 < oy < 0.5.
The third term telescopes, hence, since —I'(vT 1, uT*+1) < 0 because a Bregman divergence is always non-negative,
(iii) < T, i),
Before adding back the three terms, note that, for 7} (a|x) = 1/|A|, we have I'(v}, ut) — o (v!) = —1)(uu!). Furthermore,
—(p') < Nlog(|.A]). Therefore,
Lt p') = d(r') < Nlog(|A]). (32)

Summing over our bounds and using the Inequality (32), we get that B is upper bounded as

T
IV O i)~ D ] < L[ + i) + (i)
pa 2 . (33)
N NZ2c|X| Al N
< - log(|A|) + . log (minte[T] Ozt) log(T) + - tzzl oy.

Step 2: Upper bound on A. It remains to upper bound term A from Eq. (29),

_1 - t t t+1 t+1 ~t
AT[ZT@,M — ) = T(p ,u)} (34)

t=1

23



Online Episodic Convex Reinforcement Learning

representing what we pay for not knowing the loss function in advance. For that we use Young’s inequality (Beck &
Teboulle, 2003): for any o > 0 to be optimized later, and for each episode ¢ € [T],

Nl L N
T<Zt,[,bt _ Mt+1> _ F(Mt-‘rlvﬂt) < o , 0 + §Hﬂt t+1”m o F(ut+1,ut) (35)

From the definition of I" in Eq. (4), we have that

t+1 ~t Z Z Mt-ﬁ-l x a log (WtH( \x ) —1"( t+1 ’ufrt,q‘“)_
v W “(alz)
From the strong convexity of ¢, as u'*! € Mf:l and 77" € MZ;H * we then have from Eq. (27) that
F(Mt+1,ﬁt) _ I—\(Mt+17u7~rt7qt+1) > %Hut-ﬁ-l &t HIHOO N (36)
Using the fact that for any vectors a, b, c € R? and for any norm | - ||, the inequality |la — b||> < 2(|a — ¢|? + [|b — ¢|?)
holds, we then have by Eq. (36)
1 1 g
L R N TR D Rl T “1Hoo |- H R G
1 ~t _t+1 ﬂ,t t+1
< §(||ut - R T = 2 ) - H i PN C 1)
1 P t+l
= —fu - Hoo 1
5k

For any n € [N], we have |u!, — 4" ||} < 2. Using this result along with Lem. A.6 for p = p and ¢ = p'*!, we derive
the first inequality below. To obtain the second inequality, we apply Lem. A.5 with the sequence of policies (ﬂ't)tE[T].

T T
Z oy t+1 22 sup Z ZM% z,a)|gly 1 (|z,a) — ¢ (e, a)|y +4NZo¢t

ne[N z,a =
t=1 i=0 t=1 (38)
< 2¢|X||A|N log(T) + 4N Z .
t=1
Therefore, summing Eq. (35) over ¢ € [T'] with ¢ = 1/2, and plugging the inequality above, yields
T T T
DTGt = =T ) <7 YR o + | X[ AN Tog(T) + 2N ) .
t=1 t=1 t=1
Using that [[2*[1 o < ¢ and dividing by 7 entails:
9 N
< 7CT + = ¢|X|| Al log(T) + 2 Z o (39)

Conclusion. Finally, by replacing the final bounds of Egs. (33), (39), and (30), we obtain

Z(z =< A+B+C

T
<TTC + N <C|X|.A| log(T Z > + glog(\AD

N2¢|x 2N
+ 7C_| | log ( - A ) log(T) + — Z oy + CNc| X log(T).

mlnte[T] Qg i1
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In particular, for oy = 1/(¢ + 1),

Z(z pt— vy <TT¢ + = 1 N[log( )(C|X||A\ + 4) + log(|A|) + 2Nc|X|log(T)* log(|A]) | +¢Ne|X|log(T).

=:b

Optimising over 7 = 4 /CQLT,

T
DG vy < 2AVBT+CN | X|log(T) = O(CA/eN|X || A|T log(T) +( N+/c| X [log (| A|) T log(T)+¢ Ne| X | log(T)),

concluding the proof.

D. Bandit feedback with bonus in RL

Notations. Throughout App. D, we define the trajectory observed by the learner in episode ¢ as

o = (x;,afv,ﬁg(zn,af,))nE[N]. Let F' denote the o-algebra generated by the observations up to episode ¢, i.e.,
Fti:=0o(ot,...,0' ). We use E; to represent the conditional expectation with respect to the observations up to episode t,

ie. B[] := E[|F.

Overview of existing approaches. To adapt Alg. 1 to the bandit case, we need to estimate the loss function for each MD
update. A classic choice using importance sampling is:

0 (x,a) 1

pn P (2, a)

¢ (,0) =

{z! =x,at,=a}"

This update is unbiased, as E[1 (5t —y at —ay] = E[E[1 (gt —p 0t —a3|F']] = (" P (x, a). However, since we do not know

the true transition probability p, we cannot use this estimate directly. In (Rosenberg & Mansour, 2019a), they use ;ﬂt’ﬁt
with UC-O-REPS and achieve a regret of O(7°/4).

Consider the following confidence set, that is further detailed in Eq. (41),
={q| lgn(2'|x,a) — P!, (' |z, a)| < ! (2|z,a),Y(z,a,2") € X x Ax X,ne[N]}.

In (Jin et al., 2020), the authors incorporate a parameter y for implicit exploration, an idea from multi-armed bandits (Neu,
2015), and use the following estimate:

0 (x,a)
tza)= —200 40
SRR e S “
where fif,(z,a) := maxgeqe u™ . Although this is a biased estimate (u7 P (x,a) < fin(x,a)), Q' is constructed to

ensure that the bias introduced is reasonably small. They also argue that i can be computed efficiently through dynamic
programming. They demonstrate that running UC-O-REPS from (Rosenberg & Mansour, 2019b) with this estimate achieves
O(\/T ) regret, improving upon previous results.

In Alg. 2 we detail our method for solving the RL problem with adversarial losses, unknown probability transitions and
bandit feedback. We proceed to the regret analysis.

D.1. Auxiliary lemmas

Lemma D.1 (Lem. A.2 of (Luo et al., 2021), adapted from Lem. 1 of (Neu, 2015)). Let (2}, (x,a));e e[1] be a sequence of

functions Fy-measurable, such that 2! (z,a) € [0, R] for each (x,a) € X x A, andn € [N]. Let Z! (x,a) € [0, R] be a
random variable such that B[ Z? (x,a)] = 2t (x, a). Then with probability 1 — 4,

r N Lot —gat —ay Zh(2,0) = P (2, 0) 2L (2, a) RN N
IDIDY - <5, los
t=1n=1x,a " 27 6

it (r,a) + pt(z, a)
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Algorithm 2 MD-CURL with Additive Bonus for Bandit feedback RL

1: Input: number of episodes 7', initial policy 7! € II, initial state-action distribution g, initial state-action distribution
sequence p' = it = p™ P with pL (|2, a) = 1/|X| for all (n, z, a), learning rate T > 0, exploration parameter y = 7
(tuned in the proof of Thm. 4.1), sequence of parameters (o )se[7) With ap = 1/(t + 1).

2: Imit.: V(n,2,a,2"), N} (z,a) = M}(z'|x,a) =0

3: fort=1,...,Tdo

4:  Agent starts at (z§,al) ~ po(+)

5 forn=1,...,Ndo

6: Env. draws new state zt, ~ p,,(-|zt,_;,al,_;)

7 Update counts

N'fztll($;—l7ai—l) — N} (xf_1.al_)+1

Mytztll(l';h';fl»afzfl) — My (zplay_y,ap_y) +1

8: Agent chooses an action af, ~ 7t (+|%)
9: Observe local loss ¢4 (zt , al)
10:  end for

t+1 ’
11:  Update transition estimate for all (n, z, a, 2'): p. (2'|x, a) = %

. .t . (N—n)Cs
12:  Compute bonus sequence for all (n,z,a): b, (z,a) : T N
13:  Compute optimistic state-action distribution for all (n, z, a): il (z, a) := maxgeqt ™4, where Q is defined as in
Eq. (41)
o 2! (z,a)

14:  Compute loss estimate for all (n, z,a): ¢! (z,a) = Wﬂ{riﬁr,%;a}

15:  Compute policy 7’1 (z, a) by solving

n

it e arg min {’T<Zt — by + T(p, i)},
,u,e./\/lﬁ:r

which has a closed-form solution for 7¢*! (see Sec. A.2)
16:  Compute 7' "1, the smooth version of ¢ 1:

AT = (1 — o)™ + ay/| A

and the associated state-action distribution ‘! := uﬁtH P

17: end for
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We define the confidence interval used in Alg. 2 as
O = {q||qn(a:’|x,a) — 9t (2'|x,a)| < €l (2'|x,a), forall (z,a,2") e X x A x X,ne[N]}, 41)

with

TN|X||A TN|X||A
ot (a'|x, a)log (7|5H |) . 141og <7‘5H ‘)
maX{l,N£71($,a)} 3max{1,Nflfl(x,a)}'

el (2'|z,a) =2

We present two results regarding this confidence set. The first result, based on the empirical Bernstein inequality, shows
that the true probability kernel p belongs to this confidence set with high probability. The second is a key lemma from (Jin
et al., 2020), which explains how the confidence set shrinks over time. For the proofs, the reader is referred to the original
references.

Lemma D.2 (Empirical Bernstein inequality, Thm. 4 (Maurer & Pontil, 2009)/Lem. 2 (Jin et al., 2020)). With probability at
least 1 — 46, we have that p € QF for all t € [T].

Lemma D.3 (Lem. 4 (Jin et al., 2020)). With probability at least 1 — 66, for any collection of transition functions (p**) zex
such that p®* € QF for all x, we have

T N
23E]ZHmff%w@>—m$%aan—0<N%wvufmg(anWM>)

t=1n=1x,a

D.2. Proof of Thm. 4.1
Proof. We start by decomposing the static regret with respect to any policy m € (A 4)**¥ as follows

T T
Re(m) = Y0 =7 — 'y Yt =t 7' — 'y
t=1

t=1

MDP licy/MD
1, R)! 2, RECle

(42)
T ~t T ot T t ~t
D RGN S T N TAE D E ) W CNTAE S
t=1 t=1 t=1

policy/MD 4, Bonus term
3,Rp ’

D.2.1. TERM 1: RYP?

The analysis of this term is already provided in App. B.2. Here, we can further leverage the fact that the objective function is
linear and that, by definition, E; € [0, 1]. Therefore, with probability at least 1 — 20, we have:

D.2.2. TERM 2: REOUCY/MD

In practice, the learner plays using the estimated loss function minus the bonus. Hence, R%"™® accounts for both the bias

introduced by the loss estimation and the standard mirror descent regret bound. We start with the following decomposition:

T
policy/MD __ t t  wtpt ,p
Ry = ) =0 =

<£t—@a/ﬂ

D= L

T
Bt _ Mw,ﬁt> + Z<gt _ bt’#w*,ﬁt _ Mﬂ,ﬁt>
t=1

_

t=1

Bias terms MD term
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Mirror Descent term in Rl}olicy ™MD We begin by analyzing the error term from applying Mirror Descent with varying
constraint sets, which is similar to that of Lem. 2.1 with z! = - bt, and (ﬁ)tE[T] as the probability kernel sequence
defining the varying constraint sets. However, special attention is needed for the sup norm of the subgradient term since
it now involves an estimate of the loss function. Additionally, the optimal learning rate 7 now also depends on both the
exploration parameter «y and the analysis of the bias terms, we provide a detailed explanation of how the entire analysis is
affected below.

In proving Lem. 2.1 in App. C, the regret term for Mirror Descent is split into three terms: term A in Eq. (34), term B in
Eq. (31), and term C' in Eq. (30). The analysis of term B remains unchanged since this term is independent of the chosen
loss function. We focus on what changes for terms A and C'.

As in the proof of Lem. 2.1, we use again the notation p := ,u”t P forallt e [T]. From Eq. (34) term A is defined as
1 I
; 2 t Nt+1> o F( t+l,ﬂt)]

For a fixed t, from Young’s inequality we have that

% i t t+1 2 HZZ - b%”%o AT t+1
Dl = bt = phth < Z T2, — b
n=1 n=1 20 2

Following the analysis of term A in App. C, in special Egs. (36), (37), and (38), we obtain that for o = 1/2,

T N
eN|X|| Al log( 2N
A< DR, o+ NHIALSD) Zat (44)
t=1n=1

From Eq. (30), with the notation v* := 1™, term C' is defined as C' = %Zthl 70 — bt U+ — P From Young's
inequality with o = 1/2 we obtain that

T T
12 ]'EZ Hljt+1_yt”2
2 0,1
Tz t=1

T N
~ N|X|log(T
< ) D) 7l — w1z, + NATED)
t=1n=1

2H€t - btl\

(45)

Bounding the sup norm of the estimated loss function. Recall from the definition of the bonus function in Eq. (11),
with L = 1, that b, < NCs =: bforalln e [N]and t € [T]. As |[¢}, — bt |2 < ||65]% + ||b% ]2, we can focus on the
term involving the sup norm of the estimated loss function.

: 1 2t =z,al =a Ei(m,a)Q xtp Y
We apply Lem. D.1 with Z¢ (z,a) = —= 2l a)}+'y and 2! (2,a) = % Note that Z! (z, a), 2. (z, ) <

~» that 2}, (z, @) is F'-measurable, and that E([Z! (x,a)] = 2! (x, a). Therefore, with probability 1 — &,

Tr N
DI A,
t=1n=1

Ngl
1=
L
)
2
[\v]

o+
Il
—-
3
Il
-
8
2

ﬂ{m%:w,a%:a}gz (937 CL) 1{$§L=x,a’ﬁ=a}€%(xa a)
fi, (z, a) + it (z,a) +

I
[~
=

~
I
—
3
Il
—_
8
I~}

ﬂ{w;:w,a%:a}ZZ(xa (I)

I
[~
=

t=1n=1z,a ﬂ%(w,a) +’7
g u Pz, a) plt ’p(ac a)lt (x,a)? 1N N
S TZZZ - = +Tlog<).
t=1n=1z,a ,U/n(l' a) Mt(m a)+7 ’727 6

Lem. D.1
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Lem. D.2 states that the true probability transition p € 2! with probability 1 — 46 for all ¢ € [T']. Hence, with probability
1—46, it (x,a) = ,uzt”’ (z,a). Consequently, by replacing it in the previous inequality, we obtain that with probability
1 — 54,

r N T N Nr N
DINNCEEED WIS
t=1n=1 t=1n=1zx,

Nt N
< — — |,
TTN|X||A| + 22 log ( 5)

where for the last inequality we use that ¢%, € [0, 1].

Therefore, by replacing it in the upper bound of the terms A and C' in Eqs. (44) and (45) respectively, we obtain that

A+ C < T4bTN|X||A] + &1 (

N 3eN|X||A|log(T 2N
0 ) 27 Z -

The upper bound on term B from Eq. (33) in App. C remains the same:

N N2|X A 2N
B < —log(|A]) + eN|t] log ( . Al > log(T) + — Z oy
T T 1 a T A

il

Thus, setting vy = 1/(¢ + 1), the final upper bound on the Mirror Descent term is, with high probability, given by

@ =v P — Py <A+ B+ C
1 (46)

N N N|X||Allog(T) N N2|x
< TADTN|X||A| + —Tl og ( : ) + GM + — log(|4)) + %H log(|A|T) log(T).

N

t

Before tuning the optimal parameter 7, we must first analyze the bias terms.

Bias terms. We now proceed to analyze the bias terms. Our approach is similar to the one used in (Jin et al., 2020), with a
key difference: they utilize confidence sets in their Mirror Descent iterations, whereas we perform iterations over the set
induced by p. We start by dividing the bias term in two:

T

T T
R AN T T e N A N T D L DN GRS
t=1 t=1

t=1

Bias 1 Bias 2

Bias 1. Since ;™' 7" is F'-measurable, we have that B, [(¢* — 1, ™ 7" )] = (E,[¢* — 2'], ™" ?"). For any couple (z, a),
and for any time step n € [N],

g%(x,a)’u:rlt,p(x’a) — (,T a)(:ugz('%a) +y— /Lgt7p(-r7a)>.

[t} (x, a) — £ =l (@, a) -
t[£, (2, a) n(z,a)] (7, a) il (z,a) + it (z,a) + v

Hence,

T N 7t e
+[Bias 1] Z Z Z B (2, 0) (a, a)<ﬂn<$7a_)t+7 Hr, (:137(1)).

i (x, a) +

From Lem. D.2, and from the definition of ji, we have that with high probability, ii’. (z,a) > u™ ' (z, a), therefore,

B fBins 1 < 30 Y)Y (0a) 47— w3 (o) < Y D) SN 5.0) — w0, )] + 2| XIAINT.

t=1n=1x,a t=1n=1x,a
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Note that fif, (z, a) = maxpeq: p= P (x,a) = wt, (a|z) maxpeqr p= P (z), where pT P () := Daea (" P (x, a). Therefore,
t x,t

for each z € X, there is a p™* € Q! such that !, (z,a) = u* ¥ (x,a).

From Lem. D.3 we obtain that

ZZZ'” P (w0 i (w0 = O (NQIX\/IA|T1 (WH?NTD

Therefore,

I&mmﬂ]—O(NﬂXKﬂNTbgOXLyNT>)+7XWMNT

As we have that Bias 1 = E,[Bias 1] + ZtT:ldEt [Zt] — 1, p™ 7", all that remains is to treat the second term of the sum.
With high probability, fil, (z,a) > ugt’ﬁt (z, a), therefore

N N
ZZ t’ (z,a) ZZ .’Eaﬂ{mt_mat_a} < N.

Thus, Azuma’s inequality gives us that

T
S =T < 2T (5)

which is of a smaller order than the terms previously appearing in the bias bound. Hence,

Bias 1 = O(N2|X|\/|ATlog (m“;l']w)) + 4] X|JAINT.

Bias 2. The result follows directly from Lem. 14 of (Jin et al., 2020) using /ﬂ’ﬁt instead of p™7:

Nlog(lxlgL\lN)>

T
Bias 2 = Z(@ — 0t Py = O(
Y

t=1

Optimizing the learning and exploration parameters 7 and 7. By joinning the Mirror Descent term from Eq. (46)
along with the bounds on Bias 1 and Bias 2 terms, and setting v = 7, we obtain that

olic; N N
EJWV%%wMMMT+Thg%)+kagﬂ+mwM+NWbmmﬂbﬁﬂ

N]Og(lXH;HN)
— )

X||AINT
LJ—L—)+ﬂXWMNT+

2
+NWMMW@( .

Let o1 := (b+ 1)N|X||A|, and

g 1= N[log (%) + |X|| Al log(T) + log(|.A|) + N|X|log(|.A|T)log(T) + log <|X|(;4|N>}

For 7ocA /2 /1T, recalling that b := NCj, and that Cs := \/2|X| log(|X || A|NT'/5), we obtain that, with high probability,
REMMD = 0\ /p100T = O(N*2| X P ANT + N2| X"\ /|AIT). (47)

D.2.3. TERM 3: RPLICY/MDP

The upper bound for this term directly follows from the analysis of adding the bonus term to compensate for insufficient
exploration, as discussed in Subsec. 3.2 of the main paper, and is detailed in App. B.2. Thus, we have that with high
probability, RE"YMPP < o,
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D.2.4. TERM 4: BONUS TERM

The analysis of this term follows directly from Prop. 3.1 from the main paper: for any ¢ € (0, 1), with probability at least

1 — 36, we have that
T

St Py = O(N3| X2/ AIT). (48)

t=1

D.3. Final bound

Replacing the upper bound on all four terms from Eq.s (43), (47), (48), and that R?“Cy/MDP < 0 into the regret decomposition

in Eq. (42), we obtain that playing Alg. 2 for the RL problem with bandit feedback on adversarial loss functions has, with
high probability, a static regret of order

Rr(m) = O(N®|X|P2\/|AIT + N3 XY AWNVT).

E. Curl with bandit feedback

Notation Let S and A be two positive integers. For convenience and brevity, we suppose in what follows that X’ = [.S]
and A = [A]. Accordingly, we will often use S and A in place of |X'| and |.A| respectively. Let A € {4, A — 1} For
a vector £ € RNV94 and (n, 2, a) € [N] x [S] x [A], we use &, (, a) as a shorthand for 5((71 —1)SA+ (z—1)A+a).
Similarly, let A € {A, A —1}. Then, for an NSA x NSA matrix M, we use M (n, z,a,n’,2’,a’) to denote the item in row
(n—1)SA+ (# —1)A + a and column (n’ — 1)SA + (2 —1)A + o/ of M. For any d € Z+, let 14 € R? be the vector
with all entries equal to one and I; the d x d identity matrix.

E.1. An alternative representation for the decision sets

In the following, we will fix an arbitrary transition kernel p := (py,)ne[n]. We recall the notation that for ¢ € M?, 1o
p5(2) == D ,c4 Cnlw, a) for (n,z) € [N] x X, which satisfies p$(z) = X, arexxACn—1(2’,a )pn(z]2’,a) forn > 2.

At the first step, we define p} () = 3,/ ycxs 4 Ho(2',a")p1(z]2’, a’), which satisfies py (z) = 05 () for every ¢ € M
and z € X since the initial state distribution is the same for all occupancy measures in M, .

We describe here the mapping alluded to in Sec. 4.2.1 of M7, ' to a lower-dimensional space where it could have a
non-empty interior. This is analogous to how one can define a bijective map between the simplex A, and the set
{reR¥1:17 x<landx; >0Vie [d— 1]}, which is the intersection of the positive orthant of R4~! with the L unit
ball, see (Jézéquel et al., 2022, Section 2). This can be done since any coordinate x;+ of a vector x € A4 can be recovered
from the rest of the coordinates: z;+ = 1—3], i T In our case, denoting by a* the last action in A (i.e., a* = A, recalling
that A = [A]), we will represent the occupancy measures as vectors in RS (A=1) by omitting all coordinates that correspond
to this action. We can afford to do so, since for any € M¥E, . we have that 1, (x,a*) = phi(z) — X2, 4% fin(z, a) Where
pH is recoverable from (1,1 and given in the first step by the initial state distribution p (z), which does not depend on . In
the following, we use this idea to define the sought mapping.

Define the A x (A — 1) matrix
Taa ]
G =
[_121

and let H be the NSA x NS(A — 1) matrix obtained via taking the direct sum of V.S copies of G: H := (—BNS G.! Define
wP! e RNS4 guch that
wP(z,a) = pP(x){n = 1,a = a*}.

Next, for every 2 < m < N, we define WP as the NSA x NSA matrix where

WP™(n, x,a,n’ 2" a") =T{n=m,n" =m—1,a = a*}pn(z|2’,d).

"For an n x m matrix M and ann’ x m/ matrix M’, M @ M’ is the (n + n’) x (m + m’) block matrix [1\04 J\(/}’]
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Then, we define the NSA x NS(A — 1) matrix
BP = (INSA + Wp’N) . (INSA + Wp’g)(INSA + Wp’2)H

and the vector
BP = (Insa + WP’N) oo (Insa + Wp’g)(INSA + I/Vp’z)'wp’1 .

Finally, define the function Z,,: RV9 (A-1) _, RNS4 where

Z,(€) = BYE+ B

for £ e RVS(A-1),

To explain the semantics of =, let 4 € M?, and fi € RNS(A=1) be such that fi,, (z,a) == p,(z,a) forall (n,z,a) € [N] x

X x A\a*. It then holds that =, (f1) = p. To see this, note that H i expands /i setting (H fi)n (2, a*) = — >3, & tn (2, a).
To fully recover i, (z,a*), what remains is to add p#(x). This is achieved at n = 1 by adding w?'! to Hji since
wPl(x,a*) = pl(z) = p}(x) and wP!(z,a) = 0 for a # a*. Next, at n = 2, the matrix W72 extracts the values p} ()
when operated on H i + w?! such that uz(z, a*) is recovered at coordinate (2, z,a*) of (Insa + WP?)(Hfj + wP?!).
Iterating this procedure until step N allows us to fully recover y from ji. While for a generic & € RNS(A-1), =p(6) is
the unique vector in RV54 satisfying (2,(€)),(z,a) = &,(z,a) for all n,z, and a # a*; (Z,(£))1(z,a*) = pi(z) —
S pat (o (€)1 (2, 0) for all 2 and (Zp(€))n (@, 0%) = X1 (Fp(E)) s (27,2l ) — S g (B () (. 0) for
all zand n > 2.

Note that BP has full column rank since for any ¢ € RVS(A=1) BP¢ is only an expansion of &; hence, we can define its
left pseudo-inverse (B?)" = ((B?)TB?)~!(BP)T, which satisfies (B?)" B? = Iyg(4_1). On the other hand, the matrix
BP(BP)* projects vectors in R4 onto the column space of BP, which is given by

{MERNSA : Zun(x,a) = Z tn—1(z'sa")pp(z|a’,a’) Vo e X,2 <n < N and Zul(:ma) =0Vre X}. (49)

z’,a’

It is easy to verify that for any p, p/ € ME . p— p/ lies in the column space of BP (recall that 3 ju1(x,a) = >, pi(z,a) =
pi(x)). Moreover, B” € MP, as it corresponds to a policy 7 where 7, (a*|z) = 1 for all n and x. Therefore, for any
p e ML, i — B belongs to the column space of B”, and we consequently have that

S ((B) " (n—BP)) = BP(B") (u—B°) +B° = .

Hence, by the definition of =, (B?)" (1 — B?) coincides with x on all coordinates (n, z,a) € [N] x X x A\{a*} (since
the map =, only expands the input vector adding the coordinates corresponding to action ™), and is then the only point in
RNS(A=1) that H, maps to p. In light of this, we define

(M},)™ = {E e RV |5y (¢) e My},
the pre-image of M?, under =,,. Accordingly, we define A, : (M5, )~ — MY, “as the restriction of =, to (M, )~; that is,

Ap = :p‘(MﬁU)— .

This then is a bijective function, with A;l () = (BP)*(u— BP).

Still, (/\/lﬁU )~ is not guaranteed to have a non-empty interior. Suppose that some state z* is not reachable at a certain step
n*; that is, for every state z and action a, p,= (z*|z,a) = 0 if n* > 2, or just that p{'(z*) = 0 if n* = 1. Then, for any
p e MPE . ppx(2*,a) = 0 for every action a. This implies that for every § € (M?, )7, {,x (2%, a) = 0 for all a # a*
(since these coordinates are preserved under A), and hence, (M?, )~ has an empty interior. To remedy this, we rely on
Asm. 4.4, which is equivalent to imposing that for every state xz, p}(x) > 0 and there exists for every step n a state-action
pair (z',a’) such that p,, 1 (w|z’,a’) > 0. We show next that this condition is sufficient for (M, )~ to have a non-empty

interior. We first present an alternative characterization of (Mﬁo) .

Lemma E.1. It holds that
(ME )™ = {¢ e RNSUD: Bre > —gr}.
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Hence, (M& )~ is a polyhedral set formed by NSA constraints; namely that for n,z,a € [N] x & x A,
Bp(naxaav ERS] )Tg + ,Bﬁ(x,a) = 0.

Proof. Any £ € (MP )~ clearly satisfies BP¢ > —BP since BP¢ + 8P = A,(§) € ME, , whose coordinates are non-

negative. Conversely, assume that BP¢ > — 3P for some & € RVS(A=1 and let y1 := Z,(¢) = BP¢ + BP. Showing that
§ € (ME, )~ is equivalent, by definition, to showing that =,(£) € M, . Since B € Mﬁo and BP¢ belongs to the column
space of BP specified in (49), it holds that

Zﬂn(xaa) = Z fin—1(z',a")pn(z|2’, ')

z’,a’

for every n > 2, and that >, pu1(z,a) = >, 87 (z,a) = o2 (x) = p?(z). Then, to show that ;i € MP, | it remains to
show that y € (Axx.4)”~. By assumption, x only has non-negative coordinates; therefore, we only have to show that
> w.a Hn(z,a) = 1 at every n. This easily done via induction: >, , p1(x,a) =, p{(z) = 1, and for n > 2,

Z,U/nxa Zzun1fﬂa)10n$|$a Zﬂnlxa

z z/,a’ z’,a!

Lemma E.2. (M?, )~ has a non-empty interior if and only if Asm. 4.4 holds.

Proof. Necessity is immediate as argued before. We prove sufficiency utilizing an argument from the proof of Proposition
2.3 in (Wolsey & Nembhauser, 1999). For every step-state-action triple (n, x, a), it is easy to verify that Asm. 4.4 implies the
existence of some y € M7, ' such that 1, (2, a) > 0. Taking a convex combination with full support of one such occupancy
measure for every (n, z a) results, via the convexity of MY, , in an occupancy measure p* € M5, “whose entries are all
strictly positive. Hence, £* := A L(14*) is an interior point of the polyhedral set (Mp )~ asit satlsﬁes with strict inequality
all the constraints defining it. O

E.2. Entropic Regularization Approach
E.2.1. FITTING A EUCLIDEAN BALL IN THE CONSTRAINT SET

For the following, fix € € (0,1/S5). From Sec. 4.2.1, recall the definition k := ¢/(4 — 1 + v/A — 1). We now show that
Klng(a—1) + kv € (M)~ forany v € BN S(A-1) agsuming the transition kernel p := (Pn)ne[n] satisfies the condition
of Asm. 4.2; that is, py, (2’|, a) > e forall (n,z,2’,a) € [N] x X? x A. Take (** := E,,(klyg(a_1) + v). Note that
showing that k1 yg(a—1) + kv € (MF, )™ is equivalent to showing that (*'P € M, . In the following, we proceed with the
latter.

Note that via Lem. E.1, it suffices to show that (*’? is non-negative. We use induction in the following to show more
particularly that (?"? € (Axy.4)". By the definition of (??, we have that for (n,z) € [N] x X,

——————==(1+vy(x,0)) Ya € A\a* and (7 (w,a*) = p§,” " (&) = Y} (WP(z,a),  (50)

€
Pz, a 7 v (g,
G (@) = A-1++v/A-1 azas

where p$”" (z) = Za/,m’eAxX P (2 a )pp(x|a’,a’) forn > 2 and pfw (x) = Za/@,eAxX po(x’,a)py(z|2’,a’) =
ot (x). For a # a*, clearly (¥"P(z,a) > 0 as v,,(x,a) > —1. Note that at any step n and state z, the Cauchy-Schwarz
inequality and the fact that v € BNS(A=1) yield that

Z v (z,0) K VA-1 Z |vn(z,a)]? < VA -1.

a#a* a#a*

Hence,

Z CP(z,a) = Z 1+\/;(1+vn(:c,a))<5.

aFa* a#a -
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On the other hand, Asm. 4.2 implies that pfv’p(a:) > ¢ for every z. Hence, (50) gives that ;" (x,a*) > 0 at every z.
Moreover, (50) also implies that 3., , ({""(z,a) = 3}, p}(x) = 1, yielding that (;"” € Axxa. Forn > 2, assuming
that VP, € Axxa, Asm. 4.2 implies again that p "~ (z) > ¢ for every x. We then get via (50) that (¥P(z,a*) = 0
and that (P € Axx . since 3, , (oP(z,a) = 3, pS”" (z) = 1, which holds again via (50) and the assumption that
¢'P) € Axx . Induction then establishes that (¥ € (A )Y as sought. As mentioned above, this implies via Lem. E.1
that (*'? € M%, , or equivalently, that K1y ga—1) + kv € (M5, )™ and (VP = A)(klng(a—1) + KV).

E.2.2. ESTIMATING THE TRANSITION KERNEL

In this section, we define and analyze an alternative transition kernel estimator to the one given in Eq. (7). What we seek in
this new estimator is (/) that it estimates well the true transition kernel, with a guarantee similar to that of Lem. 2.2; (2) that
it drifts across rounds in a controlled manner, satisfying the bound of Lem. A.3 up to a constant; and (3) that, at the same
time, it satisfies the condition of Asm. 4.2 almost surely, supposing, naturally, that it is satisfied by the true kernel.

To recall the notation, for each round ¢ € [T'], o' denotes a random trajectory obtained by executing the policy 7! in the

environment; that is, o' := (z1,al,..., 2%, al;) where a!, ~ 7!(-|2%) and 2!, ~ p,(:|z!,_;,al,_;).> We also recall the
definitions
t—1 t—1
t — b o
N, (z,a) = Z Lizs =205 =a} and M, (2'|z,a) = 2 Ligs =o' 28 =0,05=a} -
s=1 s=1

Fix n,z,a € [N] x X x A. As an intermediate step, we compute at the beginning of each round ¢ the Laplace (add-one)
estimator for pf, (-|z, a); that is, for z’ € X,

Mt

n—1

Nt

n—1

(@'|z,a) +1

(z,a) + S oD

Pl (2! |z, a) =

To obtain a guarantee on the accuracy of this estimator, we firstly describe a slightly different setting. Let (25)7_, be an
i.i.d. sequence of states such that &5 ~ p,,(-|x, a). Then, for k € [T'], we define the Laplace estimator

k
Lt Y g Lias —any

ph(ala,a) = =

. . . o . . NP (w, S
Notice that in our setting, the distribution pf, (-|z, a) is equivalent to p, ™" (=) (-|z, a), keeping in mind that the number of
samples N _,(z,a) is random and dependent on the observed samples. Let Dk, (p || ¢) denote the KL-divergence between
distributions (probability mass functions) p and q. We derive the following result concerning the divergence between p and

p using known properties of the Laplace estimator and a union bound argument.
Lemma E.3. Forfixedt,n,x,a € [T] x [N] x X x A, it holds with probability at least 1 — § that

1615 + 6/Slog®? 5T + 310
max{1, N} _,(z,a)} '

DiL (pn (|2, a) | 5 (|2, a)) <

Proof. For a fixed k € [T'], Thm. 2 in (Canonne et al., 2023) and Prop. 1 in (Mourtada & Gaiffas, 2022) imply that

1615 + 61/Slog”? = + 310) s
k =T

P<DKL (on(l2,a) | prllz,a)) >

Via a union bound, we obtain that®

1615 + 6v/Slog”? = + 310)

p(DKL(pncma) [Pl ) > — N

Recall that (z§, af) ~ wo(-, ).
*Note that if N)_;(z,a) = 0, then p},(-|z,a) is the uniform distribution and D, (pn(-|z,a) | B4 (-|z,a)) < logS; hence, the
bound trivially holds.
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1615 + 6v/Slog”? = + 310
k

< P(Elk: € [T]: Dxr(pn(-|z,a) | pE(|2,a)) > ) <OT.

The lemma then follows after rescaling 4. O

Note that the distribution p!, (-|z, @) does not necessarily satisfy the conditions of Asm. 4.2 uniformly. Next, we define for a
given ¢ € [0,1/5] the set

Ay ={reR*:1lz=1landz; >eVie[d]} S Ay,

which is the set of state distribution assigning probability at least ¢ to every state. We then define pf, (-|z, a) as the information
projection of p, (-|z, a) onto AS%; that is,

P (¢|z,a) = arg min Dcr, (¢ | py, (‘|2 a)) (52)

qeAS,
which exists and is unique since A%, is compact and Dy, (- | p% (=, a)) is continuous and strictly convex where it is finite
(note that p’, (+|z, a) never assigns zero probability to any state; hence, Dk, (q | 7% (:|z, a)) is finite for any g € A%,). If

Pt (-], a) is not already in AS,, this projection can only bring us closer to p,,(-|z, a) in the K L-divergence sense as the
following inequality (Cover & Thomas, 2006, Thm. 11.6.1) states:

Dy (pa('lz,a) | 5, (2, a)) < Dxw(pn (|2, a) | 57, (|7, @) — Dxv (P (lz, a) | 5, (|2, ) - (53)

With this fact in mind, we can arrive at the following result, a parallel of Lem. 2.2.

Lemma E.4. With probability at least 1 — 0, it holds for all t,n,z,a € [T] x [N] x X x A simultaneously that

3225 + 12¢/Slog®? S24NT2 1 620
ma‘X{LNrtz—l(x7 CL)}

Ipn (|2, a) = Bl (|, a) |1 < \/

Proof. The statement is a consequence of (53), Lem. E.3, and Pinsker’s inequality; followed by an application of a union
bound over all rounds, steps, and state-action pairs. O
What remains now is to show that there exists a constant ¢ > 0 such that

]1{93;’=r,af=a}

max{1, N;"(z,a)}

Hﬁ::rll('|$7a) —]3\:1+1(~‘$,G)H1 <S¢

This can be easily shown to hold for ¢, i.e., before the projection step, as states the following lemma.
Lemma E.5. Forallne [N —1], (z,a,2') e X x Ax X, and t € [T|; pt, (2|, a) as defined in (51) satisfies

2Liat,—v a4, =a)

H ~t+1 )
N (2,a) + S

Py (2, @) = Pl (o, @)1 <

Proof. The derivation follows along the same lines as the proof of Lem. A.3. We have that

]]-{:tf“rl:z’,mﬁl:z,afm:a} + M£($/|(E,a) +1
N Yz, a) + S
]]-{a:;Jrl:;c’,fo:x,afﬂ:a} N:“L(.’E, a) + S -t

= + 2z, a).
P (z,a) + S N (2, a) + SP"H( [z,a)

ﬁi:;ll (xl|x7 a) =

Hence,

]]-{act =z’ 2t =z,at =a}
~t+1 / ~t / _ n+1 n ’ ~t /
pn+1('r \x,a) _anrl(x |£C,(l) - N/};Jrl(x,ncl) +:lg +pn+1(x |{E7(l)

]]-{xt =z,al, =a} -
= Ymm®Tn (q ot ) — t z z,a)).
Nﬁ“(x,a) + S( { n+1= } pn+1( | ))

Ny (z,a) — Ny (z,a)
Nt (z,a) + S
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Finally, we conclude that

1555 Clay @) = P (s, a) | = 2 > (Pt (@'|2, a) = pry g (2|2, a))

w’:ﬁf}:_ll (2'|z,a) =Pt | (z']2,a)

21 (ot =20t =a)

Q]I{m;:x,a%:a}
~ NPY(z,0) + S

1—pt xt iz a)) < .
( pn+1( n+1| )) N;L+1($,CL)+S

O

To derive a similar bound for the projected estimator p*, we firstly derive a more explicit characterization of the information
projection onto AS,.. For a fixed € € (0, 1/.5), define the function g.: R x Ay — Ras

ge(r;p) = Z max{re,p(z)}.

zeX

Lemma E.6. For any given p € A, the map v — g.(r;p) is €S-Lipschitz and has a unique fixed point. Moreover, denoting
this fixed point by r*, it holds that * € [1, max, p(x)/e), and that g.(r;p) > r for r < r* and g.(r;p) < r forr > r*.

Proof. We firstly note that g.(-; p) can be easily verified to be convex. For any r € R and any subgradient h of g.(-; p) at r,
it holds that |h| < £S. Hence, the convexity of g.(+; p) implies that |g-(r; p) — g-(+"; p)| < eS|r — /| for any r,7’ € R, or
that g.(-; p) is €S-Lipschitz. This implies, since €S < 1 by assumption, that g.(; p) is a contraction mapping; hence, via
Banach’s fixed point theorem, it admits a unique fixed point 7* € R. For r < 1, it holds that g. (r;p) = >, p(z) = 1 > 7.
While for r > max, p(z)/e, g (r; p) = reS < r. Therefore, r* € [1, max, p(z)/c). Moreover, for any r < 7* (r > r*),
it must hold that g. (r; p) > r (g9:(r; p) < r); as otherwise, the intermediate value theorem, applied to g.(r; p) — r, would
imply the existence of another fixed point, a contradiction. O

Next, we define 7. : Ay — R as the function that maps a distribution p € Ay to the fixed point of g.(+; p). This function is
well-defined as implied by Lem. E.6. We now show that the solution of the information projection problem onto A%, can be
expressed in terms of the function r.. For p € Ay, we define p. € A5, as

max{r.(p)e,p(x)}
wrex Max{rs(p)e, p(a’

pe(x) = 5 o max{e, p(z)/r<(p)} -

Lemma E.7. Forp € Ax, it holds that p. = argmin - Dxw(q | p).

Proof. We assume without loss of generality that p(x) > 0 for all x € X’; as otherwise, we can cast the problem into a
lower dimensional one considering only the elements € X for which p(x) > 0. Since the constraint set is compact and
the objective is continuous and strictly convex, this minimization problem admits a unique optimal solution. We start by
rewriting the problem as

min Z q(x) log a(x)

0wk P(@)

subjectto ¢ —g¢(z) <O0Vze X

Dia@)—1=0

zeX
Define the Lagrangian
Lgu0) = 3 a@)log 2 + 3 u@)e —a@) + v | 3 ale) -1
reX p(iC) TeX TEX

for v € R and u € RS). We have that

637[/(q,u,v) =log@+1—u(x)+v.

p(x)
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We now show that we can satisfy the KKT conditions by choosing a solution pair ¢* and u*, v* where

max{e, p(x)/r(p)}
p(x)/r=(p)

Firstly, ¢* indeed belongs to A5, by the definition of p., and u* is non-negative. Moreover, whenever ¢* (z) > ¢, we get
that u* (z) = 0; hence, complementary slackness holds. Finally,

OL () _ 1o TEX1E P(2)/re (D)} max{e, p(z)/r<(p)}
Ga@ ) Sl p(@)/r-)

Therefore, we conclude that p. is the optimal solution. O

q¢*(x) == pe(z) = max{e, p(x)/re(p)}, u*(x):=log , and v* = —1 +logre(p).

+1—1log —1+logre(p) =0.

Computing pe, or the information projection of p onto A5, can be performed efficiently. In particular, the following
characterization implies that r.(p) can be computed exactly in a finite number of steps by iterating over the set of states.

Lemma E.8. Let X = {z € X: g.(p(z)/e;p) < p(x)/e} and X = X\X,\. Then,

Z:cEX+ p(x)

e

Proof. As stated in the proof of Lem. E.6, for r > max,cx p(x)/e, g=(r;p) = ¢S < r; hence A, is non-empty as
it at least includes argmax,.y p(x). Moreover, from the same lemma, we have that 7.(p) < min__ X p(z)/e and

re(p) = max X p(x)/e (if X, is non-empty). Therefore,

re(p) = ge(r=(p);p) = Y max{r(p)e, p(x)} = r=(p)el Xy |+ . p(x).

TeX reX+

O

The previous lemma also implies that 7. (p) < (1 — &S)~!. Returning back to our original objective, we show next that
[pe — gell1 is no larger than a constant multiple of |p — ¢l|; for any two distributions p and ¢. Towards that end, we first
show that r. is Lipschitz continuous.

Lemma E.9. For e < 5, the function r. is I-Lipschitz with respect o the || - |1 norm; that is,
r=(p) = re(@)l < [P — ¢l
forany p,q € Ax.

Proof. Note that, for any fixed r € R, g.(r;-) is convex; and that for any p € A » and subgradient k of g.(r;-) at p, it holds
that % is non-negative and satisfies | k[, < 1. Hence, for any p,q € Ay,

l9e(rip) —g-(ra)l < D, (@) —a@) = ), (a(@) —p)) = %Ilp —qx- (54)
z: p(x)>q(z) z: q(z)>p(z)

Then, we obtain that

|7<(p) — TE(Q)| = |96(7"6(p)3p) —9:(r=(q); )|
< [ge(re(P);p) — 9:(r=(@); p)| + |9:(re(q); p) — 9e(re(q); 9)

1 1 1
< eSlre(p) —re(q)| + in —qf1 < 5\7“6(29) —r:(q)| + §||p— a1,

where the second inequality follows from (54) and Lem. E.6, and the last inequality holds since € < % The lemma then
follows after rearranging the last result. O

Lemma E.10. Assuming € < 5, it holds for any p,q € Ax that |p. — q:|ly < 2|p — q|1.
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Proof. We have that

g-(z) = max{re(q)e, q(x)}

re(q)
_ max{re(q)e, q(x)} — max{re(p)e, p(x)} + max{re(p)e, p(z)}
TE(Q)
_ maX{ra(Q)E’ q(:c)} B max{re(p)g,p(a:)} Te(p) z
- @ @
Then,
G- (z) = pe(@) = r;q) (max{re(g)e, q(x)} — max{re(p)e, p(x)} + (r=(p) — r(q))p<(2)) -

Using Lem. E.9 and the fact that

| max{re(q)e, ¢(z)} — max{re(p)e, p(z)}| < max{e|r(q) — re(p)|, lg(x) — p(z)|}
<elre(q) — re(p)| + [q(x) — p(2)],

we obtain that

Hpa - QEH1 = Z |q5($) —p5($)|

1
<@ Y (elre(@) = re®)] + la(@) — p(@)] + pe(@)|re(p) — 72 (q)])
€ x
lp — al 5
<P 94 29) < 2lp—qlh,
where the last step uses that ¢S < 1/2 and 7.(q) > 1. O

Finally, we arrive at the sought result, a parallel of Lem. A.3.

Lemma E.11. Foralln e [N —1], (z,a,2') € X x Ax X, and t € [T]; p,(2'|z, a) as defined in (52) with e < 5
satisfies
51yt —p gt —
~t+1 ~ {z},=m,a},=a}
Jz,a) = pri Gz, a) | € —/—2—.

7 s ) = Bl (o )l < it
Proof. This is a direct consequence of the definition in (52) and Lems. E.5, E.7 and E.10. ]
E.2.3. THE ALGORITHM
For ¢ € (0,1), define

S2ANT?
Ch = \/3225 +12v/510g>? —5 62, (55)

which is the leading factor in the confidence bound of Lem. E.4. For the purpose of exploration, much like the full
information case, we will utilize at each round ¢ a bonus reward vector b* € RY54 to be subtracted from the estimated
gradient, where

Cir

b (z,0) == L(N —n) vmax{l, N} (z,a)}

(56)

for (t,n,z,a) € [T] x ({0} U[N]) x X x A.

Finally, with all its components detailed, we present Alg. 3, our first approach for CURL with bandit feedback. As mentioned
in Sec. 4.2.1, the main changes compared to Alg. 1 are the use of spherical estimation to obtain a surrogate for the gradient
and the use of a suitably altered transition kernel estimator.
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Algorithm 3 Bonus O-MD-CURL (bandit feedback)

input: learning rate 7 > 0, perturbation rate ¢ € (0, 1], sequence of exploration parameters (cv;)e[r € (0,1)7

initialization: p. (2'|7,a) < 1/SV(n,z,2',a), p' € arg minueMﬁ; ()
fort=1,...,Tdo

draw ut € SVS(A=1 yniformly at random

¢t ¥ = Ape(klys(a—ry + kul)

fit < (1=d)p’ +o¢'

7 (af2) — (2, 0)/ Soe s (3, 0)

execute 7 and observe F''(;™ ) and a sampled trajectory o == (%, al, ..., %, aly)

g LEENS(A - F (Pt

construct g € RV54 as gt (z,a) « gt (z,a) for a # a* and §! (v, a*) < 0

construct bonus vector b’ as in (56)

7 (afz) < (1 — ag)ut (2, 0)/ oo 4 (3, 0) + /A

construct the new estimated kernel '+ via (51) and (52)

set u**! € arg min pe ML TGt = bt ) + D, ™ 7)

end for

E.2.4. AUXILIARY LEMMAS

Lemma E.12. For 0 < § < 1 and p* as defined in (52), it holds that

wt N
3N S U (@, @) [pisa (e, @) = By (e, @)y < 3CEN?VSAT + 25N /2Tlog(?)

with probability at least 1 — 24.

Proof. This lemma can be proved in the same manner as its full information version Lem. A.1 with only two small
changes; we use the bound of Lem. E.4 instead of Lem. B.1 and we modify the definition of the filtration to be F; =

o(ul,ol, ..., ul=t ot~ ul). O

Lemma E.13. Forany 0 < § < 1,

n '’ N
EZ "Z\/mi{l—;i < SNUSAT + SN\ 2T o8 (7).

holds with probability at least 1 — 0.

Proof. The proof is the same as for Lem. A.2 (the version proved in the full information case), except that, again, the
filtration used in the proof would be defined as F; := o(ul, 0!, ..., ul=1 o' =1 u?). O

Proposition E.14. Let b® and pt be as defined in (56) and (52) respectively. Then, for any 6 € (0, 1), with probability at
least 1 — 36,

T T
D00+ o) < LN (3CLVSAT + 25y 27 o ()
i-1 t=1
4 2 N
+ LCY N (3\/8147—% SA /2T log (5)) :

Proof. The proof is the same as that of Prop. 3.1 except that we would rely on Lems. E.12 and E.13 in place of Lems. A.1
and A.2, and use the definition of b* in (56) instead of (11). O]
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Lemma E.15. Let X be a random variable taking values in R, z1,zo = 0 be two constants, and §' € (0,1). If X < 2z
uniformly and P(X > 2z1) < &', then E[X] < 21 + 6’25

Proof. Simply, E[X] = E[[{X < 21} X] + E[[{X > 21} X]| < 21 + 22P(z > 2z1) < 21 + ' 20. O

E.2.5. REGRET ANALYSIS

The following theorem, a restatement of Thm. 4.3, provides a regret bound for Alg. 3. Recall that we have adopted in this
section the shorthand notation S = |X'| and A = |A|.

Theorem E.16. Under Asm. 4.2, Alg. 3 with a suitable tuning of T, 8, and (a)ie[7) satisfies for any policy 7 € (A 4)* >N

that
L(L + 1)55/4A5/4N3T3/4 n L+1

E[Rr(7)] S T S2APANWT,
3 3

where < signifies that the inequality holds up to factors logarithmic in'T, N, S, and A.

Proof. Fixing e (A4)**", we have that

T
E[Rr(m)] =E Y (F'(u™ ?) — Ft(u™?))

t=1

T
= (')~ F'(u™ 7)) +E

t=1

T
(a7 = ! (u7)) +E 3 (P (u™) = F'(u™)) -

@ @ ®

It holds with probability at least 1 — 2 that

1=

P
Il
—

[z ? =z 7

N
1=

T
®< LZHMﬂ't,p 7M7Tt’ﬁt||1 _
t=1

-+
Il
—

3
Il

1

3
|
_

M?t’p(ﬂi7a)||pz’+1(‘|93aa) 7ﬁ§+1(~|x,a)||1

,a

A

t~
N
M=

T
L
)
i

L
]

o
8

%

< 3LN?VSATCY p + 2LSN?4/2T log(NT),

where the first inequality uses the Lipschitz continuity of F'*, the second inequality follows from Lem. B.1, and the last
inequality follows from Lem. E.12. Hence, since L Y, ||p™ ? — p™ 7 |, < 2NLT, itholds via Lem. E.15 (with §' = 2)
that

E[®] < 3LN?*VSATC} p + 2LSN?/2T log(NT) + 4LN . (57)

For the third sum, we use again the Lipschitz continuity of F'*, Lem. B.1, and Lem. E.4 to get that with probability at least

1
1- 4,

N
h
D=
1=
=
33
hsj
|
=
33
&

T
@<Ly —pmrl,
=1

ﬁ
I
—_
3
I
—_

P (2, 0)||pir1 (|2, a) — Bl (|2, a)|),

N
h
D=
M=
RS
h@rﬂ

-+
Il
—
3
Il
—
-
Il
8
IS}

n—1 Cl
©P (z,a) YT
’ v/max{1, N}(z,a)}

N
h
D=
1=
=
=3
24

o+
[
H
3
[
A
o
I
(=)
B
IS}

_ Cln
7 /max{1, N (z,a)}

L
=
=

(N —n) Y un? (x

T,a

-
Il
—
3
Il
=}
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[l
1=

T
(P 6 + 3 o, B
t=1

1

-+
Il

[l
1=

T T
<Mﬂtﬁt,bt> + Z<M0a b6> + Z<Mw,ﬁt _ Mﬂtﬁt’bt>.
1 t=1 t=1

-+
Il

Via Prop. E.14, it holds with probability 1 — % that

T T
S b+ Y o, by < LCY e N3[3C] 7 V/SAT + 28+/2T 1og(NT) |
t=1

t=1

+ LCY ,p N?[3VSAT + S1/2T log(NT)] .

Hence, chaining these last two results and using a union bound, we get via Lem. E.15 (with ¢’ = %) that

T
E[®- Y — p™ 7 by | < LCYnN?[3C] 7V SAT + 281/2T log(NT)]
t=1

+ LCY;pN?[3VSAT + S1/2T1og(NT)| + 8LN(1 + C},zN), (58)

where we have used that

T T T
® = 3P =) S LY = |+ 3 el = i |y < 2LNT(1 4 C N
t=1 t=1 t=1

Define F*: (Ax, 1)V — Ras
P () = Byegnscan [F((1 = )+ 0¢™7) |

As Pt satisfies the condition of Asm. 4.2 by design, (”’ﬁt e M (Axxa)N as argued in App. E.2.1; thus, Ftis

Ko
well-defined. Similarly, since u® € SVS(4=1 < BNS(4=1) and ¢* = ¢“"7", it holds that (* € MY, . Via the convexity of

St St o At - ~ St . ~ ot pt .
M?, , the fact that u* € MP , and the definition of /i*; it holds that fi* € MP, . This yields that i* = ™ **', recalling the

definition of 7* in Alg. 3. Using the Lipschitz smoothness of F*, we have that
FH ) = U (uf) = FY(t) = FY (') = F'((1 = )u* + 6C) = Eqegnscan | F'((1 = o)’ + 3¢ 7) |
< SLEyeansian¢* = ¢V |1 < 20LN
and that
B am ) = F (') = Bygnsoan [F1((1= )™ +5¢%%") | = F(um )
< SLE epnsia— [CPP — p™P' || < 26LN .
Hence,

A~

(F'(p™ ") — Fi(p') + F'(u') — F'(u™P) + F'(u™P" ) — F'(u™"))

®
Il
1=

o~
I
—_

<V]?'t(ut), ut — u”’ﬁt> +45LNT

N
IR

t

T T
(VE () = bt = ™) + 4OLNT + Y (b, ™ = ' 4+ 3t = ™7
1 t=1 t=1

-
I
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The last term is easily bounded as follows:

T . T T T

St — ™y = St — ity = 8 Wt — ¢y < 8 ) 6t — ¢t < 28C%;r LNT |

t=1 t=1 t=1 t=1
We then conclude that

T ~t t At T ~ ~t
E|Q + Z<bt, por =t Py <E Z<VFt(,f) — byt — ™ ) + 4SLNT + 20C] ,; LN?T . (59)

Then, combining (57), (58), and (59) yields that

T
] <EY(VE (') = b, pt — ™"y + 26L(2 + Cf ) N)NT
1

+3LCY p N*[3C] ;pVSAT + 25+/2T log(NT)] + 4LN (3 + 2C7 ;. N) . (60)

Define Ft, [t : (Mﬁ:)f — RasTF(¢) := F'(Ap(€)) and (&) = P (A3t (€)). Then, recalling that r := T

z’;t

F' (A5 () = F'(4!) = Eyepnscan :Ff (1— o)t + 5Cv.ﬁt)]

= Eyeprscan |F(AZH((1 —0)p +5Cv,ﬁt))]
) (= o)t +a¢m — g7))|
(1=8)(B")" (u' = B7) + 8(B7) " (¢ - 87))|
(1= 8)AZ (1) +5AA}(§W ))]
( )

1= 0) A5 (i

= E,eprsa-1n |F

(
(
= ]EveIBNS(A—l) Ft((Bp
(
= ]E,UEIBNS(A—I) Ft(
(

= ]E,UGIBNS(A—I) F

+5’£1NS(A 1) +(SI£’U):|,

where the fourth equality follows form the fact that Algtl(u) = (Bﬁ‘) - (,u - ,Bﬁt), and the last equality follows since
C”viﬁt = Apt (H]lNS(A—l) + kv). Lem. 1 in (Flaxman et al., 2005) and the chain rule imply that

a 1-9
VEF! (Aﬁtl(,ut)) _ WNS(A — 1)E esnsa-1) [F ((1- (5)Ap (1 ) + 5,‘{11\75(,4 1)+ dku)u ]
1-6 B .
= S NS(A = DEyesvsian [F(u — §)AZM (') + AZH(¢HP ))u]
1-6 ~t
= (STNS(A — 1)EuESNS(A—1) [Ft((l - (5),Mt +0¢™P )U]
1-6
- 6TNS(A — DEyeesvsan [FH((1 = 0)p’ + 6¢H)u'] |
where the last equahty uses that ¢! = ¢*" and that both x! and p' are independent with respect to w!. And since
VIFt( Hut)) = (BP)TVE(ut), we obtain that
~t At ~ 1 - (S I~
(BP (BP) )TV E (ut) = (A~ 1)E,ecgvscan [Ft((l — &)t + 8¢t ((BP )+)Tut]
= EutESNS(Afl) [((Bﬁt)+)T./g\t] ) (61)
where
1-9 1-9

ot

5 NS(A—-1F((1 -8 +5¢Hu' = WNS(A — 1) F' (")
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The vector g differs from g* (which is employed in Alg. 3) in that it is defined using F*(fi*) instead of F'*(u™ ). For
round t € [T], let F; := o(u', 0!, ... ut, o) denote the o-algebra generated by the random events up to the end of round
t;and let E;[-] == E[- | Fi—1] with .7-"0 bemg the trivial o-algebra. We then have that

T T
E Y (VE' (u),pt = ™) =B Y (B (BP) ") TVF! ('), u — ™)
1 t=1
T - .
= EZ<Et[((Bp ) )Gt =
& ~t
Z TAt th _ 'u7r,p >7

where the first equality holds via the fact that B (Bf’t)Jr(ut — ;ﬂ’ﬁt) = ul — u”’ﬁt since ut — p”’ﬁt belongs to the
column space of B (see App. E.1), the second equality uses (61) and the fact that conditioned on F;_1, the only source
of randomness in ((B’A’t)+)T’g\t is u, which is sampled independently in each round; and the last equality uses the
tower rule, linearity of expectation, and the fact that p! — ,u”’ﬁt is measurable with respect to F;_;. Since u! — ,u”’f’t =

B (A5 (1t) — A5 (™)), we have that
(-/g\t)T(Bﬁt)+ (:ut - :umﬁt) = (./g\t)T(Bﬁt)+Bﬁt (A;tl (ut) — A;Etl (Mﬂ'.ﬁ“)) _ @t)T(A; (Mt) _ A;tl (uﬂ-’f,t))
since (Bﬁt)JrBﬁt = Ins(a—1), see App. E.1. Therefore,

T
E Y (VE () pt = ™7 = EZ< A ) = AGH (P

!

~E AT~ A )+ B X o050 45 ()

t=1

=B ap>+nzz< o () = A (™))

~

where the last equality follows from the definition of §* (see Alg. 3) and the fact that * and ,u”’ﬁt are expansions of Agtl (1)

and A;tl (/ﬂ»ﬁt) respectively, augmented with the entries corresponding to action a™*. Focusing on the second sum, we have
that

Z< — 9" AN = AGH (W) <

f e gl [AS () — A ()|

M’i TM%

158 — gtlloo| 1" — ™',

.
I
—_

T
<28 315" - g'lo
t=1

L0 I .
=2 EHUtHooIFt ity — F'(um 7|

4 o I

SNPSAR Y|P = F' ()]

€ t=1

4 T

= —N2§A2 Ft(y™ Py _ gt~ »
%S ;I (™ ") = FH (™ 7))

N

N

4 T t ~t t
LN SAT L7 =
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where the fourth inequality uses that x > 57 and that ul e SNS(A-1)

of F**. As shown in (57), we have that

, and the last inequality uses the Lipschitz continuity

T
E ||u# —pm||, < BN?*VSATC, 1. + 2SN?\/2T log(NT) + 4N .
t=1

Hence,

]EZ<VFt ), 1t — ’p><]E2<g ut — P >+ LN3SA2(3N\/SA Cl/r +2SN+/2T log(NT) + 4) .
t=1

Combining this result with (60) yields that

T
M <EY Gt — bt ut =™y + 5LN3SA2 (BNVSATC,; + 2SN+/2T 1og(NT) + 4)
t=1
+20L(2 + O} )pN)NT + 3LC} ;. N*[3C] ;pVSAT + 25+/2T log(NT)] + 4LN (3 + 2C1 ;7 N)

]EZ@ — bt —p ’p>+62L 2+ C};pN)NT +4LN (3 + 2C} 7 N)

t=1 —

=5

LC1 pN?SA?(BNVATCY ) + 2N+/25T log(NT) + 4) (62)

5

=:Ey

where the last inequality uses that C'] /T = +/S. Note that

N
2. lghls
n=1

1-— 6 t A t
= — NS(A-1(A-1+VA-TDF ; 27, [0
2 2
< féN SA nZl oo
2 202 5/2 QA2 5/2 @ A2
< 5N%SA VN Z |ut |2, < N SA Z > lu (z,a) 6]\7 SA%,

n=1x,a

where the second inequality uses Cauchy-Schwarz and the last inequality uses that ! € SNVS(A—1) Moreover, we have that
N N
6% 1,00 = 2ozt [0 lloo < 2002y LIN —n)CY 1 < LN? C1p- Hence, using that C'} ;. > > /85,

1g" = b 1,00 < 2 N394 4 LN?CY )y < (L +1)C1 )V SAZN®2.

€d ed

Via Lems. A.4 and E.11,* we can invoke Lem. 2.1 with ¢ = 5e, ¢ = (L + 1)C} ,,V/SA?N*2, and a, = 1/(t + 1) to get
that (from the proof of Lem. 2.1)

N 20e2SN log(AT)%(N + A)
T

10e? / 3/2 A2 ATT/2
3 (L+1)Cy )7 SY AN "= log(T) .

Z<g — bt~ >P><T( (L+1) ;/T\/§A2N5/2)2T

+

“To invoke Lem. E.11, we assume without loss of generality that the constant e specified in Asm. 4.2 satisfies £ < %
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Tuning 7 optimally yields that

T
D=t ™" < ;%(L +1)C1 ) SA*N?2,/20e2N(N + A)T log(AT)?
10¢” ’ 3/2 A2 ATT/2
+—5 (L+1)C1,pS*? A2 N2 1og(T)
1 10e?
<3 0c (L +1)CpSA*N? log(AT) (v/(N + A)T + VSN) .

“

=53

Hence, plugging back into (62) yields that

E [RT<7T)] < 551 +

Setting § := min {17 A/ “2:“3 } we get that

E[Ry(r)] < max {2 Z1(5a + E3), 2(E2 + )} +4LN(3 + 20} ;).

1
E(EQ +Z3) +4LN(3 +2C] 1 N).

Consequently, the theorem follows after using the definition of C] T from Eq. (55) and ignoring log factors. O

E.3. Self-Concordant Regularization Approach

We have used the set (/\/lﬁO ), the preimage of MUY, under the map =), (or A), to represent in RNS(A=1) the set of valid
occupancy measures. A more concise characterization, given by Lem. E.1, is that

(M)” = {£e RVSUD. Bre > g7}
in other words, (M, ')~ is a convex polytope formed by the constraints B?(n,r,a,-,-,)7{ + Bh(x,a) = 0 forn,r,a €
[N] x X x A. Moreover, Lem. E.2 asserts that int (M, )™, the interior of (M, ), is not empty under Asm. 4.4.
We consider then the function ¢y, : int (M%)~ — R defined as

(€)== Y, log(B(n,z,a,-,-, )7 + Bu(,a)) .

n,xr,a

As mentioned in Sec. 4.2.2, Corollary 3.1.1 in (Nemirovski, 2004) yields that 1y, is a ¥-self-concordant barrier (see
Definition 3.1.1 in Nemirovski, 2004) for (Mﬁo)_ with? = N - S - A. The approach we analyze here is to perform OMD
directly on the set (M?, )~ with ¢y, as the regularizer.

For ¢ € int (M2, )~ and y € RVS(A=1) define the local norm [[y||e := /yTV 241 (€)y. This is indeed a norm since the fact
that (/\/lﬁ0 )~ is bounded implies via Property II in (Nemirovski, 2004, Section 2.2) that the Hessian of )y, is non-singular

A/yT (V291 (€))~1y. The Dikin ellipsoid of radius 7 at £ € int (M)~

everywhere. Its dual norm is denoted as
is given by

E(€) = {y e RYSUD [y — gl < 1} = € + (Ve () BYSAD
Via Property I in (Nemirovski, 2004, Section 2.2), &1 (§) < (M5, )~ for any £ € int (M5, ).

For £,y € int (ML, )™, we denote by Dy, (y,&) = tw(y) — ¢w(§) — (¥ — &, Vb (€)) the Bregman divergence between y
and & with respect to 1y, From the proof of Thm. E.16, we recall the definition F* := F"* o A,,. As alluded to above, our
OMD updates will take the form

g — argmin 7(g",&) + Dy, (£,€"),
Ee(MRy)™

where g* will be chosen as a surrogate for VIF!(£?). Differently from the proof of Thm. E.16, we redefine the smoothed
approximation F*: (M? )~ — R such that

F!(€) == Eyepvscan [FH((1 — )€ + (€8 + (V2 (1) 0))].
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Figure 4. This figure provides a graphical comparison between the sampling approach used in Alg. 3, represented on the left, and that
used in Alg. 4, represented on the right. The simplified domain here is {z € [0,1]?: |«|1 < 1}. Both approaches are illustrated at three
points: a, b, and c. In the first approach, with some § € (0, 1) and d:=1—24,we sample from a circle of radius §/(2 + \@) centered at a
convex combination between the point of interest and o := (1 /(2 +2),1/(2 + \/5)) In the second approach, we consider the barrier
—log(l —z1 —x2) — X,;_, ,log(z:) and sample from the Dikin ellipsoid (of a certain common radius) induced by this function at each
point.

This is well-defined since we are evaluating IF? on a convex combination of the argument ¢ and a point inside the ellipsoid
&1 (€%), which is a subset of (./\/lﬁ0 )~ as cited before. Via Corollary 6.8 in (Hazan, 2021) and the chain rule, we have that

~ 1-9 1 1
V() = ¢ 5 INS(A DB qegmsca s [F'((L— )¢ +3(€" + (V0n(€)""w)) (V) “u]. (63
Hence, with u! sampled uniformly from SV5(4—1) we pick (as mentioned in Sec. 4.2.2)
1-946 1 1
g = ( 5 )NS(A — DF* (&8 + 6(V2 (€)™ ul) (V2 (€1)) Pt (64)

such that [E+ [gt] = VIt (€%), see also (Saha & Tewari, 2011) for a similar estimator in another BCO setting. We summarize
this approach in Alg. 4, and provide in Fig. 4 a graphical comparison with the sampling approach of Alg. 3 on a simple
decision set. Before proving the regret bound of Thm. 4.5, we collect a few standard properties and auxiliary results
concerning self-concordant barriers and their use as regularizers.

E.3.1. AUXILIARY LEMMAS
For z,y € int (Mﬁo)_, it holds via Property I in (Nemirovski, 2004, Section 2.2) that

1
(1—=ly - z])?
whenever ||y — x|, < 1. We state the following auxiliary lemma, which will be used to assert the proximity between &' and
£+1 for our algorithm. Establishing this ‘stability’ is a crucial step in the local norm analysis.

Lemma E.17. Let x € int (M, )~ and { € RNSMA=D be such that 0], < . and define

(1= |y — 2]2)* V() < VZi(y) < V2 () (65)

y:= argmin {{,§)+ Dy, (§,7).
eint (MJ,,)~

Then, y € Ejy ().

46



Online Episodic Convex Reinforcement Learning

Algorithm 4 Bandit O-MD-CURL with logarithmic barrier regularization

input: domain (M?, )~ with non-empty interior, learning rate 7 > 0, exploration parameter J € (0, 1]
initialization: ' « argminggiy (v, )~ Yi(€)
fort=1,...,T do

draw u? € SV5(A=1 yniformly at random

gt — &ty 5(v2wlb(§t))71/2ut

it = Ap(Eh)

m(alz) — i@, a)/ Yoe s A (2, a)

output 7* and observe F*(ji*)

g — SSANS(A = D)F () (V2 (1) 0t

1 — argminggy, mz - T7L9% &) + Dy, (€,€Y)

Ko
end for

Proof. For £ € int (MP,

Ho

)7, let

9(5) = <€7 §> + Dllilb (5, '7;) = <€7 §> + ¢1b(§) - wlb('x) - <€ - Z, leb(x)>

Note that g is a self-concordant function on int (Mﬁ 0)* (Item (ii) in Nemirovski, 2004, Proposition 2.1.1), whose Hessian
(hence, local norms and Dikin ellipsoids) coincides with that of vy, everywhere. Moreover, g is below bounded thanks to
(M7, )~ being a bounded set, which implies that g attains its minimum on int (M?%, )~ (Property VI in Nemirovski, 2004,
Section 2.2). This minimum is also unique via strict convexity. Hence, y is well-defined.

The rest of the proof is similar to the proof of Lem. 13 in (Wei & Luo, 2018) and Lem. 9 in (Van der Hoeven et al.,
2023). Thanks to the strict convexity of g, to show that y € £, () it suffices to show that for any ¢ on the boundary of
Eyy(@), g(x) < g(£);: this is because x € & (x) and y = argminge uqz )~ 9(8)- For any such € on the boundary of £y, (),
Taylor’s theorem implies that there exists some z on the line segment between = and £ such that

9(6) — g(x) = (€ — 2, Vg(a)) + 3 (€~ 1)TV?g()(E ~ )
= (62,0 + 5~ )TV () (€~ 2)
> (62,0 + 56— )T VPun(a) € — )

R

1
= —[|€ — 2] o]l] e + ng —z|2
1 1
=——|¢ T == 07
2” SR

where the second equality holds since V2g = V29, and Vg(x) = £ + Vih(2) — Vb (x) = £, the first inequality holds
via (65) and the fact that z € £, (), the second inequality holds via the definition of a dual norm, the last equality holds
since ¢ is on the boundary of &1, (z), and the last inequality holds via the assumption that [[€], . < 75. O

For z € int (M, )™, the Minkowski function of (M?, )~ with the pole at z is defined as (Nemirovski, 2004, Section 3.2)

mo(y) = inf{t > 0: x+ ¢ (y—a) e (M5 )7}

fory € (M, ). The following lemma readily follows from the properties of the Minkowski function. It is used in
the analysis to handle the bias term of the standard OMD regret guarantee, which is slightly more involved in this case
considering that the comparator need not belong to the interior of (M?, )=, where 1y, is defined (and finite).
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Lemma E.18. Let x € int (ML, )™, ye (M}, )=, 6 € (0,1), and z := (1 — )y + dx. Then,
Ui(2) < Up(z) + NSAlogd™t.
Further, let & := argmin ., (ME)- Y (x) and z2 == (1 — 0)y + dx. Then,
Dy, (¢,4) < NSAlogd™".

Proof. Since ¢y, is an N .S A-self-concordant barrier for M7, ,

Property II in (Nemirovski, 2004, Section 3.2) implies that

1/)113(2’) < ¢1b(z) + NSA IOg = (Z) .

On the other hand,
+(1-0)"tz—)=2+Q -8 A -0)y+dzx—zx)=x+y—z=ye (./\/lfbo)f,
implying that 7, (2) < 1 — §. Hence, ¥1p(2) < ¢p(z) + NSAlogd1.
Next, we note that the optimality of = implies that
Dy, (2,2) = Yi(2) — (@) — (2 — 2, Vi (2)) < Yin(2) — w(2)
which concludes the proof when combined with the first part. O

E.3.2. REGRET ANALYSIS

We are now ready to prove the regret bound of Thm. 4.5, which is stated more explicitly in the following theorem.

3/4 3/4 23/
Theorem E.19. Under Asm. 4.4, Alg. 4 with 7 = = nggiT and § = min{ = N3/4S;/4§Z(1°g 9l , 1} satisfies for

any policy w € 11 that
E[Ry(n)] < max{élx/l? LNT/4 (SAT)** (log T)V/4, 34, /N5S3A3TlogT} +2LN.

Proof. Firstly, we assert that the iterates £ are well defined; similar to what was argued in the proof of Lem. E.17, the
functions iy (-) and 7{g", -) + Dy, (-, £") are self-concordant on int (M?, )~ (Item (ii) in Nemirovski, 2004, Proposition
2.1.1) and bounded from below thanks to (/\/llfj0 )~ being a bounded set, implying via Property VI in (Nemirovski, 2004,
Section 2.2) that each of these functions attains its minimum on int (Mf’m)_, which is also unique via strict convexity. Also

note that indeed /i* € M?, = since EA"' € (M?F, )~ as we argued before presenting the algorithm.

Let p* € argmin e v Zt L Ft(p) and Ry = ]EZtT L(FH(p TPy~ Fi(p *)), which satisfies Ry = maxren E [Ry ()]

Define £* = (1 — §)Ap L(u*) + 8¢, where 6 € (0,1) is a constant to be specified later. To start with, we have that

BN (R - ) = B Y (PG SRS (FE) - F (05 ().
t=1 t=1 t=1
Next, we derive that

F'(€') — F'(¢
— F' (¢ + 8(T20n(€) " /2u") — Eyepnscan [FY (€1 + 8(V2um(€)20)
< LE,epnsca |[Ap (€5 + (V2 (€)™ ?u’) — Ay (¢ + 5(V2wlb<£t))—”%) I,
= 0LE,cpnsa-1 ||Ap((v2¢lb(§t))fl/2ut) — A (Ve (€° ~12y )||1
= 0LEepnsca-n [|Ap (65 + (V2 (€)™ ?u’) = Ap (¢ + < 2Pin(€") )],
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< OLEepvsian [[|Ap (€ + (T2 (€))7 2u) [, + |4y (€ + (T2um(€) " 20)] |
< 20LN,

where the first inequality uses the Lipschitz smoothness of F* and the fact that F* = F*' o A,; the second and third
equalities use the fact that A,, is an affine function; and the last inequality holds since both & + (V24y,(€1)) Y 2ul, €F +
(V2 (£1)) 120 € £1(€") < (MP, )™, and that for any & € (MP, )=, A,(€) € MP and therefore satisfies A, (€)1 < N.
We similarly derive that

F(€%) =T (A, (u")
— Eyepvsorn [F (1= 0)€* + (€' + (V2 (€))™0)) | - F* (A, (%))
= Eyenvscan [F'((1 = 6)(1 = 8)A, " (%) + (1= 6)0€" +6(¢" + (V2 (€9)V*v))]
—F' (A, (1Y)
< LEqegnscan || (1= 8)(1 = )* + (1= 6)3A,H(€1) + 64, (&' + (VZun(€) ~20) — u¥|
< LE epscan 188 = 8 = dlu* |1 + (1 = )3[|4,(6D)]|, + ][ Ap (€' + (T2u(e)0)] |

Ho

B

< LEyegnscan| (8 + 8)lu*h + 8 8p(6M)][, + 3llAp (€" + (V2um(€)0)
< 20LN +20LN .

Hence, using also the convexity of I, we obtain that

Z F!(€*)) + 46LNT + 20LNT

T
Z (VEY(gh), €8 — €*) + 40LNT + 26LNT . (66)

In this proof, let F; := o(u?, ..., u) denote the o-algebra generated by u®, ..., u; and let E;[-] := E[- | F;_1] with F
being the trivial o-algebra. We then have that

F' (") = Eue[g'] = Ee[g'],

where the first equality follows from (63) and the the second equality holds since conditioned on F;_1, u’ is the only source
of randomness in ¢* and is sampled identically and independently in every round. Using that £ — £* is measurable with
respect to F;_1, we then obtain that

T T
Ry <E ) (Byg' &' — &*) + 46LNT + 20LNT = E Y (g",& = £*) + 46LNT + 25LNT .

t=1 t=1

Via the definition of £ and the fact that £* € int (M2, ), Lem. 6.16 in (Orabona, 2023) implies that

T D *’ 1 T
Sot e —ey < Palll) S R
t=1

t=1

where (? lies on the line segment between ¢! and £'+1. We firstly observe that

ol = (S5 2S0= DFUEY ) ()T (T () 2 (T20m(€) (TP 2

2
_ <(1 - O Nsa- )Ft(“)> < SNiSA7,
where we have used that F'(fi*) < N. Hence, if

)

< 16N2SA”’ ©67)
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then 7 g;|¢t « < 1/16. Consequently, Lem. E.17 (with z = &', y = £'*1, and £ = 7g,) would assert that £+ € &, (£");
and hence, ¢* € E1,(£"). It would then hold via (65) that

1
HgtHgt,* < (1 _ Hct — gtHE )2 HgtHE',* < 4”.915”?‘,*7
t

On the other hand, via Lem. E.18 and the definitions of ¢! and £*, we have that
leb(£*7 gl) < NSAlog o7t
Hence, conditioned on (67), we obtain the following regret bound

_ NSAlogd™' 2 -
Ry < YSAlogo 5—72_N452A2T +46LNT + 20LNT . (68)

/

T

Setting

<1 § | logT , 17 N3/483/4 A3/4 (log T') /4
= — =z —=2 — _ 1%
0=7 7=\ Negar: M0 mm{ V iz T4 o

we obtain that

_ NSAlogT 21
74,7

Rr < NAS2A%T + 46LNT + 2LN

T 02
< %«/N5S3A3TlogT +46LNT + 2LN
< max{4\/ 17TLN™/* (SAT)** (log T)'/*, 34~/ N353 A3T log T} +2LN. (69)

If T > NSAlog(T), then our choice of 7 indeed satisfies (67):

0 logT - 6
"= 16\ N3SAT S 16N25A "

Otherwise, we can fall back to the trivial regret bound

Ry < NT < N?SAlog(T),

which is dominated by the bound in (69); hence, the theorem follows. O
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