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Introduction



Post hoc (model analysis after training) interpretability methods can be


    model-specific (limited to specific model classes) or model-agnostic


    local (explain an individual prediction) or global (explain the entire model behaviour)


and may output


 Feature summary statistic or visualisation


 Model internals (learned weights)


 Data point (counterfactual explanations)


 Intrinsically interpretable model

∙

∙

∙

∙



Interpretable models


Linear models


Generalised additive models


Decision trees


Model-agnostic methods


Partial dependance plot


Accumulated local effects 


Feature importance


Surrogate model


Shapley values 


Example-based methods


Counterfactual explanations 


Adversarial exemples 


Prototypes and criticisms 



Interpretable models



Generalised Additive Models  


      

𝔼[g(Y)] = ∑
k

fk(X)

̂Y = g−1(∑
k

̂fk(X)) → ̂fk (X)

Classification And Regression Trees

 (variablek, thresholdk)k∈splits

Linear Models  


     

𝔼[Y] = XTβ
̂Y = XT ̂β → ̂β1, …, ̂βp



Use case: daily french power consumption

Model
RMSE MAPE

Train Test Train Test

Benchmark (empirical 
mean) 10 852 MW 10 669 MW 17.4% 18.9%

Linear regression 5 091 MW 5 718 MW 8.10% 9.97%

Generalized additive 
model 3 498 MW 4 097 MW 4.85% 6.32%

CART 3 784 MW 4 505 MW 5.16% 6.70%

Explanatory variables:


 Temperature


  Day (Mon., Tue., … Sun.)

∙
∙

Variable to forecast:


 Daily french power 

consumption (MW)


  Train: 


Jan. 1st 2016 - Jul. 23rd 2021


  Test: 


Jul. 24th 2021 - May 31st 2023
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Linear regression




Weights interpretation: features do not have to be strongly correlated!


 Numerical feature: increasing the feature by one unit changes the prediction by its weight


 Binary features: changing the feature from the reference category to the other category changes 

the prediction by the feature’s weight 


 One-hot-encoding for many categories


 Intercept: if all feature values are zero and all categorical feature values at the references, prediction 

= intercept weight. This is meaningful when the features have been standardised (= prediction of an 

input where all features are at their mean value)

Assumptions: ∀i = 1,…n, Yi = Xiβ + εi , with εi ∼ 𝒩(0,σ2) i . i . d

Model: ̂β = (XTX)−1XTY (ordinary least squares)

Prediction: ̂Ynew = ̂βXnew

∙
∙

→
∙



Linear regression
R-squared reflects how much of the total variance of the target outcome is explained by the 

model


  with  


 with the model does not explain the data at all and  if it explains all of the variance


R-squared  if  even if the new variables do not contain any information 


 use the adjusted R-squared:





It is not meaningful to interpret a model with very low (adjusted) R-squared.

R2 = 1 −
∑n

i=1 (Yi − ̂Yi)2

∑n
i=1 (Yi − Ȳ)2

Ȳ =
1
n

n

∑
i=1

Yi

R2 = 0 R2 = 1

↗ p ↗

→

R̄2 = R2 − (1 − R2)
p

n − p − 1



Linear regression
Feature importance: absolute value of its t-statistic (testing  against ), which is the 

estimated weight scaled with its standard error: 





 Importance of feature  if  


 Importance of feature if  (we are less certain about the weight value)


Feature selection: 


  LASSO (least absolute shrinkage and selection operator) introduces 

βj = 0 βj ≠ 0

̂βj

Var( ̂βj)
≈

̂βj

σ (XTX)−1
jj

∙ j ↗ ̂βj ↗

∙ j ↘ Var( ̂βj) ↗

→



Example
̂Yt = ∑

d∈{lundi,…,dimanche}

αd1d(t)=d + βTt



Pros and cons 
Linear regression


    models the predictions as a weighted sum of features


    ensures the feature number remains small with LASSO


    is used in many domains 


 comes with solid statistical theory


but it


 can only represent linear relationships (each non-linearity or interaction has to be hand-crafted 

and explicitly given to the model as an input feature)


 has generally poor predictive performance (oversimplify model)


 can be counter-intuitive when features are correlated (weighted features can then offset each 

other; with completely correlated features there is no longer any uniqueness of solution)
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Generalised additive model 




 functions   can be plotted 


 predictions are a sum of weighted transformed features


It


    can represent non-linear relationships


 can model bivariates relationships 


but 


 the more the linear model is modified, the less it can be interpreted

Assumption: 𝔼[g(Y)] = ∑k fk(X)
Model:∀k, fk is approximated using splines

Prediction: ̂Ynew = g−1(∑k
̂fk(Xnew))

→ ̂fk

→

∙
∙

∙



Example
̂Yt = ∑

d∈{lundi,…,dimanche}

fd (Tt)1d(t)=d



Decision Tree
Tree based models split the data multiple times according to threshold values of the features 


They are built recursively using a segmentation criterion  (Variance criterion or Gini impurity):


For a node , feature  and the associated threshold value  to cut  are chosen according:    

 , where   and   


With  the leaves of the tree, the prediction is 


Regression (mean of the leaf):   


Classification (vote in the leaf): 

C

𝒩 j⋆ s⋆ 𝒩

( j⋆, s⋆) ∈ arg min
j, s

C(𝒩+) + C(𝒩−) 𝒩− = {i | Xi,j < s} 𝒩+ = {i | Xi,j ≥ s}

ℒ

̂Ynew = ∑
ℓ∈ℒ

1Xnew∈ℓ

|ℓ | ∑
i∈ℓ

Yi

̂Ynew ∈ arg max
m ∑

ℓ∈ℒ

1Xnew∈ℓ ∑
i∈ℓ

1Yi=m



Decision Tree - Global interpretation

Contribution of a split  which splits  into  and  measures how much it has reduced the 

criterion compared to the parent node:





Importance of feature   is the scaled sum of the contributions of the splits considering :


With  the set of splits related to feature :


k 𝒩k 𝒩−
k 𝒩+

k

ι(k) = C(𝒩k) − (C(𝒩+
k ) + C(𝒩−

k ))

j j

Kj j

I( j) =
∑k∈Kj

ι(k)

∑j′￼
∑k′￼∈Kj′￼

ι(k′￼)



Decision Tree - Local interpretation

 can be explained by decomposing the decision path into one component per feature


Data point  starts at the root  and goes thought  until the leaf  


With  (regression) or  (classification),  decomposes:





where  is the sum of the terms related to the feature :





where  is the feature used to split  

̂Ynew

Xnew 𝒩0 𝒩1, …, 𝒩D−1 𝒩D

Ȳ𝒩 =
1

|𝒩 | ∑
i∈𝒩

Yi Ȳ𝒩 ∈ arg max
m ∑

i∈𝒩

1Yi=m
̂Ynew

̂Ynew = Ȳ𝒩D
= Ȳ𝒩0

+
D−1

∑
d=0

(Ȳ𝒩d+1
− Ȳ𝒩d) = Ȳ𝒩0

+ ∑
j

Δj(Xnew)

Δj(Xnew) j

Δj(Xnew) = ∑
d=1…,D | j(d)=j

(Ȳ𝒩d+1
− Ȳ𝒩d)

j(d) 𝒩d



Example



Pros and cons 
Decision tree


    is ideal for capturing interactions between features in the data


    as a natural visualisation, with its nodes and edges


 invites to think about predicted values for individual input as counterfactual: if a feature had 

been greater / smaller than the split point, the prediction would have been  instead of  etc.


    does not require feature transformation


but it


 is interpretable as long as it remains short 


 fails to deal with linear or ``smooth'' relationships in this case (it needs many splits)


 is quite unstable (a few changes in the training data set may lead to a completely different tree)

∙
∙
∙
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Model-Agnostic methods



Partial dependence plot 
Partial dependence plot shows the marginal effect some features have on the prediction


For a set of features  the partial dependence function is the -dimensional function:





It is estimated by calculating empirical means in the training data - Monte Carlo approach:





 Underlying assumption: features in  are not correlated with features in  (otherwise 

calculations include data points that are very unlikely or even impossible)


 Heterogeneous effects might be hidden: PD only shows the average marginal effects (if for a 

feature half data points have a positive association with the prediction and the other half has a 

negative association, then the PD curve could be a horizontal line)

J |J |

PDJ(x) = 𝔼X−J[ ̂f(x, X−J)] = ∫ ̂f(x, x−J)dℙ(x−J)

PDJ(x) ≈
1
n

n

∑
i=1

̂f(x, Xi,−J)

∙ J −J

∙



Example - Partial dependence plot 



Individual Conditional Expectation (ICE)

ICE plot visualizes the dependence of the prediction on a feature  for each data point separately, 

resulting in  lines, compared to one line overall in partial dependence plots:


For each  (or a sub-sample), 


 is plotted


PDP is the average of the lines of an ICE plot. 


Centered ICE


It may be hard to tell whether the ICE curves differ between inputs because they start at 

different predictions, the solution is to center the curves at a certain point and display only the 

differences: 

j

n

i = 1,…, n

x ↦ ̂f(x, xi,−j)

x ↦ ̂f(x, xi,−j) − ̂f(xanchor,j, xi,−j)



Example - Individual Conditional Expectation



Accumulated Local Effects (ALE)
If features are correlated, PDPs are biased and cannot be trusted (computation uses artificial data 

points that are unlikely in reality) 


With  a neighbourhood of  , the marginal plot function


 , 


avoids averaging predictions of unlikely data inputs, but mixes the effect of feature  with the 

effects of all correlated features


Accumulated Local Effects plots solve this problem by calculating – also based on the conditional 

distribution of the features – changes (defined as the gradient) in predictions instead of averages

Nj(x) x

Mj(x) = 𝔼X−J|XJ=x[ ̂f(XJ, X−J) | XJ] = ∫x−J

̂f(x, x−J)dℙ(x−J | xJ = x) ≈
1

|Nj(x) | ∑
i∈Nj(x)

̂f(x, xi,−j)

j



Accumulated Local Effects (ALE)
Gradients are accumulated locally by integrating over the range of feature  up to 


Instead of directly averaging the predictions, ALE method calculates the prediction differences 

conditionally to feature  and integrates the derivative over features 


Derivation and integration usually cancel each other out but here the derivative isolates the effect 
of the feature of interest and blocks the effect of correlated features

By subtracting a constant, the ALE plot is centred so the average effect over the data is zero





where  is some value chosen near the lower bound of the effective support of feature  (not 

crucial, since it only affects the vertical translation of the ALE and the constant in will be chosen to 
vertically center the plot)

j x

j j

ALEj(x) = ∫
x

x0
j

𝔼X−j|Xj[ ∂ ̂f
∂xj

(Xj, X−j) | Xj = s]ds − constant

x0
j j



Accumulated Local Effects (ALE)
To estimate , let consider a sufficiently fine partition  of the 

sample range of  (take the  empirical quantiles of  for )


The non-centered ALE is approximated with 





where  is the index of the interval into which  falls, i.e., 


Three levels approximation: 


 on the expectation (as for marginal plots)


 on the integral (sum on the  intervals) 


 on the derivative (finite differences)

ALEj(x) {Nj(k) = ]zk−1, zk] | k = 1,2,...,K}
{xj,i}i=1…,n k/K {xj,i}i=1…,n zk

ÃLE j(x) ≈ ∫ x
x0

j

1
|Nj(s) |

∑i∈Nj(s)
∂ ̂f
∂xj

(s, X−j,i)ds

≈ ∑k(x)
k=1 (sk − sk−1) × 1

|Nj(s) |
∑i∈Nj(sk)

̂f(sk, Xi,−j)− ̂f(sk−1, Xi,−j)
sk − sk−1

≈ ∑k(x)
k=1

1
|Nj(s) |

∑i∈Nj(sk)
̂f(sk, Xi,−j) − ̂f(sk−1, Xi,−j) ,

k(x) x x ∈ ]sk−1, sk]

∙
∙ k(x)
∙



Accumulated Local Effects (ALE)
Finally, the ALE is centered so that the mean effect is zero:





 shows how the model predictions change in a small “window” of feature  around  for 

data points in that window, it can be interpreted as the main effect of feature  at  compared to 

the average prediction of the data


For example, an ALE estimate of 2 at  means that when feature  has value 3, then the 

prediction is lower by 2 compared to the average prediction


Because of quantiles, intervals can have very different lengths (weird  if  is very skewed)

ALEj(x) = ÃLE j(x) −
n

∑
i=1

ÃLE j(Xj,i)

ALEj(x) j x

j x

Xj = 3 j

ALEj j



ALE for the interaction of two features and more

ALE plots can also show the interaction effect of two features  and . The calculation are the 

same (rectangular cells instead of intervals because effects are accumulated in two dimensions):





ALE for two features estimate the second-order effect, which does not include the main effects of 

the features;  it is the additional interaction effect of the features (if two features do not interact, 

the 2D ALE should be close to zero)


PDPs always show the total effect, while ALE plots show the first - or second-order effect. 

j1 j2

ALEj1,j2(x1, x2) = ∫
x1

x0
j1

∫
x2

x0
j2

𝔼X−j1,j2|Xj1,Xj2[ ∂2 ̂f
∂xj1∂xj2

(Xj1, Xj2, X−j1,j2) | Xj1 = s1, Xj2 = s2]ds1ds2 − constant



ALE for categorical features
ALE needs the feature values to have an order, because the method accumulates effects in a 

certain direction


For a categorical features; an order has to be defined


It influences the calculation and interpretation of ALEs


 Order the categories according to their similarity based on the other features (sum over the 

distances of each feature)

→



Pros and cons 

ALE plots are


  unbiased (still work when features are correlated)


  faster to compute than PDPs


  easy to interpret, centered at zero and 2D ALE plot only shows the interaction


but they


 may be shaky with a high number of intervals (  number of intervals makes the estimates more 

stable but smooths the true complexity of the model)


 have a much more complex and less intuitive implementation compared to partial dependence 

plots

∙
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Feature importance
The importance of a feature is the increase in the model’s 

prediction error after permuting the feature


Fisher et al. (2019) proposes the permutation feature 

importance algorithm:


Estimate the original model error 


For :


 Generate feature matrix  by permuting  in 


 Estimate the error 


 Calculate the feature importance


   or 

ℓ0 = ℓ(Y, ̂f(X))
j = 1…, d

∙ Xj,perm j X

∙ ℓj,perm = ℓ(Y, ̂f(Xj,perm))
∙

FIj =
ℓj,schuffle

ℓ0
FIj = ℓj,perm − ℓ0

̂f(X)

̂f(Xj,perm)

Y

X

̂f

̂f

ℓ0

ℓj,perm



Feature importance - Training or testing data?
It depends on the expected values for the importance of a feature that has no relationship with  

but for which the model has found one (i.e. over-fitting on this feature)


Should it be zero because the feature does not contribute to improved performance on unseen 

test data? 


  testing data is good choice


Should the importance reflect how much the model depends on the feature, regardless whether


the learned relationship generalize to unseen data?


  training data is good choice

Y

→

→



Example - Feature importance

Feature Importance on training set Importance on testing set
Temperature 2.1% 0.6%
Nebulosity 0.3% 0.0%
Humidity 0.8% 0.2%

Position in the year 2.2% 0.5%
Month 0.9% 0.1%

Half-hour 7.3% 4.6%
Day of the week 3.8% 2.4%

Holiday / Working dat 0.2% 0.1%
Type of Holiday 0.1% 0.0%

Holidays 0.4% 0.1%
Smoothed temperature short 9.5% 7.4%

Smoothed nebulosity 1.1% 0.1%
Smoothed humidity 3.1% 0.9%

Smoothed temperature long 2.0% 0.2%



Pros and cons 
Feature importance


 provides a highly compressed, global insight into the model’s behaviour


 automatically takes into account all interactions with other features (the importance of the 

interaction between two features is included in the importance measurements of both features...)


 does not require retraining the model (some other methods suggest deleting a feature, 

retraining the model and then comparing the model error)


but it


 requires access to the true outcome 


 depends on the permutation of the feature vector and might vary greatly (repeating the 

permutation and averaging the importance measures over repetitions stabilises the measure)


 is biased by unrealistic data inputs when features are correlated


 decreases when a correlated feature is added

∙
∙

∙

∙ Y
∙

∙
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Surrogate model

A global surrogate model is an interpretable 

model (linear model, decision tree, for e.g.) 

 that is trained (using the data set than for 

the original model training or a new one) to 

approximate as accurately as possible the 

predictions of the black box model 

̂g

̂f

̂f

̂g



Pros and cons 
Global Surrogate


 is flexible


 is very intuitive and straightforward


 comes with a measure of how good it approximates the black box model (R-squared, for e.g.)


but it


 draws conclusions about the model and not about the data, since it never sees the real 

outcomes 


 can very close to the original model for one subset of the data-set, but widely divergent for 

another subset


 comes with all the advantages and disadvantages of the chosen interpretable model

∙
∙
∙

∙
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Shapley values
A prediction is explained by assuming that each feature value of the input is a “player” in a 

collaborative game where the prediction is the payoff 


Shapley values fairly distribute the “payoff”/prediction among the players/features (from 

coalition game theory, Shapley 1953)


Example - linear model: the contribution of feature  in the prediction  is





and the prediction is the mean predicted value plus the sum of the contributions (which can be 

negative):


j ̂f(x)
ϕj, ̂f (x) = ̂βjxj − ̂βj𝔼(Xj)

̂f(x) = 𝔼( ̂f(X)) + ∑
j

ϕj, ̂f (x)



Shapley values in game theory
In a cooperative game, with  the payoff of a coalition of players , the Shapley 

value of player  is





The Shapley value is the only attribution method that satisfies the properties of a fair payout:


 Efficiency: dividing by the number of players ensures that  


 Symmetry: if  then 


 Dummy: if ,  then 


 Additivity: for a game combined payouts , the respective Shapley values are 

v(S) S ⊆ {1,2,…, p}
j

ϕj,v = 1

 number of players
∑ coalition including j

contribution of j to coalition
number of coalition including j

= 1
p ∑S⊆{1,2,…,p}\{j}

1

(p − 1
|S | )

(v(S ∪ {j}) − v(S))

∙ v({1,2,…, p}) =
p

∑
j=1

ϕj,v

∙ ∀S\{i, j}$, $v(S ∪ {i}) = v(S ∪ {j}) ϕi,v = ϕj,v

∙ ∀S\{i} v(S ∪ {i}) = v(S) ϕi,v = 0

∙ v + v′￼ ϕi,v + ϕi,v′￼



Shapley values for Machine Learning
Players = features  and  payoff = prediction 


For a set of features  taking values , as it is generally not possible to compute predictions 

without the features , they are replaced in the calculation of 


 is defined as the prediction for feature values  in that are marginalised over features in :





For more than a few features in , the exact solution becomes problematic as the number of 

possible coalitions exponentially increases


 Approximation with Monte-Carlo sampling (Štrumbelj and Kononenko, 2014) of the Shapley 

value of a feature 

x1, …, xp
̂f(x)

S xS

S̄ = {1,2,…, p}\S v(xS)

v(xS) xS S̄

v(xS) = 𝔼XS̄[ ̂f(xS, XS̄) ]= ∫ ̂f(xS, XS̄)dℙXS̄

J

→

j



Shapley values approximation
For :


 Draw a random input  from the data 


 Pick a random subset of feature indices 


 Construct the two inputs:








 Compute the contribution (corresponds to “ ”  in the game theory 

formulation of Shapley values):


   


Compute Shapley value as the average: 


m = 1,…, M
∙ z
∙ J ⊆ {1,…, p}\{j}
∙

xm
+j = (xJ, z−J, xj)

xm
−j = (xJ, z−J, zj)

∙ v(S ∪ {i}) − v(S)

ϕm
j (x) = ̂f(xm

+j) − ̂f(xm
−j)

ϕj(x) =
1
M

M

∑
m=1

ϕm
j (x)



Pros and cons
Shapley values 


 are efficient: the difference between the prediction and the average prediction is fairly 

distributed among the feature values of the input and give a clear interpretation


 allows contrastive explanations: instead of comparing a prediction to the average prediction of 

the entire data-set, it is possible to compare it to a subset or even to a single data point


 are the only explanation method with a solid theory


but they


 require a lot of computing time - only approximate solution are feasible


 return a simple value per feature, so it cannot be used to make statements about changes in 

prediction for changes in the input


 require access to the data


 suffer from inclusion of unrealistic data points when features are strongly correlated

∙

∙

∙

∙
∙

∙
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Implementation



Example-based methods



̂f(X)X

̂f

Example-based explanation methods select particular 

inputs of the data-set 


 to explain the behaviour of machine learning models 


 to explain the underlying data distribution


They explain a model by selecting inputs of the data-set 

and not by creating summaries of features (model-

agnostic methods)

∙

∙



Counterfactual explanations
 How an input has to change to significantly change its prediction?


Counterfactual explanation = smallest change in the feature values that changes the prediction to 

a predefined output - flip in predicted class (classification) or reaching some threshold (regression)


 Counterfactual  should be as similar as possible to 


 requires a distance measure  between two inputs (Manhattan distance, e.g.)


 Counterfactual  should have feature values that are likely


 Prediction has to change significantly


 requires a desired outcome 


Wachter et al. (2017) suggests to minimise 


∙ X′￼ X
→ d

∙ X′￼

∙
→ Y′￼

L(X, X′￼, Y′￼, λ) = λ( ̂f(X′￼) − Y′￼)2 + d(X, X′￼)



Adversarial examples

Goodfellow, et al. Explaining and harnessing adversarial examples (ICLR 2015)

Adversarial examples are counterfactual examples used to fool machine learning model



Prototypes and Criticisms (Kim et al., 2016) 
Prototypes:  data input that is representative of all the dat


Maximum mean discrepancy method finds  prototypes  by minimising


, 


where  is a kernel function that measures the similarity of two inputs 


Criticisms: data input that is not well represented by the set of prototype (extremes) 


With,


 


criticisms are the extreme values of the witness function in both negative and positive directions


m z1, z2, …, zm

1
m2

m

∑
i=1

m

∑
j=1

k(zi, zj) −
2

mn

m

∑
i=1

n

∑
j=1

k(zi, xj) +
1
n2

n

∑
i=1

n

∑
j=1

k(xi, xj)

k

witness(x) =
1
n

n

∑
i=1

k(x, xi) −
1
m

m

∑
i=1

k(x, zi)



Prototypes and Criticisms




the prototype distribution overestimates the data distribution (a prototype 

has been selected but there are only few data points nearby)


 the prototype distribution underestimates the data distribution (there are 

many data points around but any prototypes nearby)


witness(x) =
1
n

n

∑
i=1

k(x, xi) −
1
m

m

∑
i=1

k(x, zi)

witness(x) > 0 →

witness(x) < 0 →
x



Prototypes and Criticisms

Prototypes and Criticisms are useful to 


 Understand the data distribution


 Build a nearest prototype interpretable model:


  with 


 Make a black box model interpretable by analysing the predictions of the prototypes and 

criticisms: in which cases was the algorithm wrong? 

∙

∙

̂f(x) = Yj⋆ j⋆ ∈ arg max
j=1…,m

k(x, zj)

∙



That’s all folks!


