
Margaux Brégère

Statistical and Sequential Learning for

Time Series Forecasting

Interpretable Machine Learning

 Apley and Zhu. Visualizing the effects of predictor variables in black box supervised
learning models, 2020

 Fisher et al. All Models are Wrong, but Many are Useful: Learning a Variable’s
Importance by Studying an Entire Class of Prediction Models Simultaneously, 2019

 Friedman and Popescu. Predictive learning via rule ensembles, 2008

 Kim, Khanna, and Koyejo. Examples are not enough, learn to criticize! criticism for
interpretability, 2016

 Koh and Liang. Understanding black-box predictions via influence functions, 2017

 Ribeiro et al."Why should i trust you?" Explaining the predictions of any classifier,
2016

 Shapley et al. A value for n-person games, 1953

 Štrumbelj and Kononenko. Explaining prediction models and individual predictions
with feature contributions, 2014

 Szegedy et al. Intriguing properties of neural networks, 2013

 Wachter et al. Counterfactual explanations without opening, 2017

∙

∙

∙

∙

∙

∙

∙

∙

∙

∙

References

Introduction

Post hoc (model analysis after training) interpretability methods can be

 model-specific (limited to specific model classes) or model-agnostic

 local (explain an individual prediction) or global (explain the entire model behaviour)

and may output

 Feature summary statistic or visualisation

 Model internals (learned weights)

 Data point (counterfactual explanations)

 Intrinsically interpretable model

∙

∙

∙

∙

Interpretable models

Linear models

Generalised additive models

Decision trees

Model-agnostic methods

Partial dependance plot

Accumulated local effects

Feature importance

Surrogate model

Shapley values

Example-based methods

Counterfactual explanations

Adversarial exemples

Prototypes and criticisms

Interpretable models

Generalised Additive Models

𝔼[g(Y)] = ∑
k

fk(X)

̂Y = g−1(∑
k

̂fk(X)) → ̂fk (X)

Classification And Regression Trees

 (variablek, thresholdk)k∈splits

Linear Models

𝔼[Y] = XTβ
̂Y = XT ̂β → ̂β1, …, ̂βp

Use case: daily french power consumption

Model
RMSE MAPE

Train Test Train Test

Benchmark (empirical
mean) 10 852 MW 10 669 MW 17.4% 18.9%

Linear regression 5 091 MW 5 718 MW 8.10% 9.97%

Generalized additive
model 3 498 MW 4 097 MW 4.85% 6.32%

CART 3 784 MW 4 505 MW 5.16% 6.70%

Explanatory variables:

 Temperature

 Day (Mon., Tue., … Sun.)

∙
∙

Variable to forecast:

 Daily french power

consumption (MW)

 Train:

Jan. 1st 2016 - Jul. 23rd 2021

 Test:

Jul. 24th 2021 - May 31st 2023

∙

∙

∙

Linear regression

Weights interpretation: features do not have to be strongly correlated!

 Numerical feature: increasing the feature by one unit changes the prediction by its weight

 Binary features: changing the feature from the reference category to the other category changes

the prediction by the feature’s weight

 One-hot-encoding for many categories

 Intercept: if all feature values are zero and all categorical feature values at the references, prediction

= intercept weight. This is meaningful when the features have been standardised (= prediction of an

input where all features are at their mean value)

Assumptions: ∀i = 1,…n, Yi = Xiβ + εi , with εi ∼ 𝒩(0,σ2) i . i . d

Model: ̂β = (XTX)−1XTY (ordinary least squares)

Prediction: ̂Ynew = ̂βXnew

∙
∙

→
∙

Linear regression
R-squared reflects how much of the total variance of the target outcome is explained by the

model

 with

 with the model does not explain the data at all and if it explains all of the variance

R-squared if even if the new variables do not contain any information

 use the adjusted R-squared:

It is not meaningful to interpret a model with very low (adjusted) R-squared.

R2 = 1 −
∑n

i=1 (Yi − ̂Yi)2

∑n
i=1 (Yi − Ȳ)2

Ȳ =
1
n

n

∑
i=1

Yi

R2 = 0 R2 = 1

↗ p ↗

→

R̄2 = R2 − (1 − R2)
p

n − p − 1

Linear regression
Feature importance: absolute value of its t-statistic (testing against), which is the

estimated weight scaled with its standard error:

 Importance of feature if

 Importance of feature if (we are less certain about the weight value)

Feature selection:

 LASSO (least absolute shrinkage and selection operator) introduces

βj = 0 βj ≠ 0

̂βj

Var(̂βj)
≈

̂βj

σ (XTX)−1
jj

∙ j ↗ ̂βj ↗

∙ j ↘ Var(̂βj) ↗

→

Example
̂Yt = ∑

d∈{lundi,…,dimanche}

αd1d(t)=d + βTt

Pros and cons
Linear regression

 models the predictions as a weighted sum of features

 ensures the feature number remains small with LASSO

 is used in many domains

 comes with solid statistical theory

but it

 can only represent linear relationships (each non-linearity or interaction has to be hand-crafted

and explicitly given to the model as an input feature)

 has generally poor predictive performance (oversimplify model)

 can be counter-intuitive when features are correlated (weighted features can then offset each

other; with completely correlated features there is no longer any uniqueness of solution)

∙
∙
∙
∙

∙

∙
∙

Generalised additive model

 functions can be plotted

 predictions are a sum of weighted transformed features

It

 can represent non-linear relationships

 can model bivariates relationships

but

 the more the linear model is modified, the less it can be interpreted

Assumption: 𝔼[g(Y)] = ∑k fk(X)
Model:∀k, fk is approximated using splines

Prediction: ̂Ynew = g−1(∑k
̂fk(Xnew))

→ ̂fk

→

∙
∙

∙

Example
̂Yt = ∑

d∈{lundi,…,dimanche}

fd (Tt)1d(t)=d

Decision Tree
Tree based models split the data multiple times according to threshold values of the features

They are built recursively using a segmentation criterion (Variance criterion or Gini impurity):

For a node , feature and the associated threshold value to cut are chosen according:

 , where and

With the leaves of the tree, the prediction is

Regression (mean of the leaf):

Classification (vote in the leaf):

C

𝒩 j⋆ s⋆ 𝒩

(j⋆, s⋆) ∈ arg min
j, s

C(𝒩+) + C(𝒩−) 𝒩− = {i | Xi,j < s} 𝒩+ = {i | Xi,j ≥ s}

ℒ

̂Ynew = ∑
ℓ∈ℒ

1Xnew∈ℓ

|ℓ | ∑
i∈ℓ

Yi

̂Ynew ∈ arg max
m ∑

ℓ∈ℒ

1Xnew∈ℓ ∑
i∈ℓ

1Yi=m

Decision Tree - Global interpretation

Contribution of a split which splits into and measures how much it has reduced the

criterion compared to the parent node:

Importance of feature is the scaled sum of the contributions of the splits considering :

With the set of splits related to feature :

k 𝒩k 𝒩−
k 𝒩+

k

ι(k) = C(𝒩k) − (C(𝒩+
k) + C(𝒩−

k))

j j

Kj j

I(j) =
∑k∈Kj

ι(k)

∑j′￼
∑k′￼∈Kj′￼

ι(k′￼)

Decision Tree - Local interpretation

 can be explained by decomposing the decision path into one component per feature

Data point starts at the root and goes thought until the leaf

With (regression) or (classification), decomposes:

where is the sum of the terms related to the feature :

where is the feature used to split

̂Ynew

Xnew 𝒩0 𝒩1, …, 𝒩D−1 𝒩D

Ȳ𝒩 =
1

|𝒩 | ∑
i∈𝒩

Yi Ȳ𝒩 ∈ arg max
m ∑

i∈𝒩

1Yi=m
̂Ynew

̂Ynew = Ȳ𝒩D
= Ȳ𝒩0

+
D−1

∑
d=0

(Ȳ𝒩d+1
− Ȳ𝒩d) = Ȳ𝒩0

+ ∑
j

Δj(Xnew)

Δj(Xnew) j

Δj(Xnew) = ∑
d=1…,D | j(d)=j

(Ȳ𝒩d+1
− Ȳ𝒩d)

j(d) 𝒩d

Example

Pros and cons
Decision tree

 is ideal for capturing interactions between features in the data

 as a natural visualisation, with its nodes and edges

 invites to think about predicted values for individual input as counterfactual: if a feature had

been greater / smaller than the split point, the prediction would have been instead of etc.

 does not require feature transformation

but it

 is interpretable as long as it remains short

 fails to deal with linear or ``smooth'' relationships in this case (it needs many splits)

 is quite unstable (a few changes in the training data set may lead to a completely different tree)

∙
∙
∙

y1 y2

∙

∙
∙
∙

Model-Agnostic methods

Partial dependence plot
Partial dependence plot shows the marginal effect some features have on the prediction

For a set of features the partial dependence function is the -dimensional function:

It is estimated by calculating empirical means in the training data - Monte Carlo approach:

 Underlying assumption: features in are not correlated with features in (otherwise

calculations include data points that are very unlikely or even impossible)

 Heterogeneous effects might be hidden: PD only shows the average marginal effects (if for a

feature half data points have a positive association with the prediction and the other half has a

negative association, then the PD curve could be a horizontal line)

J |J |

PDJ(x) = 𝔼X−J[̂f(x, X−J)] = ∫ ̂f(x, x−J)dℙ(x−J)

PDJ(x) ≈
1
n

n

∑
i=1

̂f(x, Xi,−J)

∙ J −J

∙

Example - Partial dependence plot

Individual Conditional Expectation (ICE)

ICE plot visualizes the dependence of the prediction on a feature for each data point separately,

resulting in lines, compared to one line overall in partial dependence plots:

For each (or a sub-sample),

 is plotted

PDP is the average of the lines of an ICE plot.

Centered ICE

It may be hard to tell whether the ICE curves differ between inputs because they start at

different predictions, the solution is to center the curves at a certain point and display only the

differences:

j

n

i = 1,…, n

x ↦ ̂f(x, xi,−j)

x ↦ ̂f(x, xi,−j) − ̂f(xanchor,j, xi,−j)

Example - Individual Conditional Expectation

Accumulated Local Effects (ALE)
If features are correlated, PDPs are biased and cannot be trusted (computation uses artificial data

points that are unlikely in reality)

With a neighbourhood of , the marginal plot function

 ,

avoids averaging predictions of unlikely data inputs, but mixes the effect of feature with the

effects of all correlated features

Accumulated Local Effects plots solve this problem by calculating – also based on the conditional

distribution of the features – changes (defined as the gradient) in predictions instead of averages

Nj(x) x

Mj(x) = 𝔼X−J|XJ=x[̂f(XJ, X−J) | XJ] = ∫x−J

̂f(x, x−J)dℙ(x−J | xJ = x) ≈
1

|Nj(x) | ∑
i∈Nj(x)

̂f(x, xi,−j)

j

Accumulated Local Effects (ALE)
Gradients are accumulated locally by integrating over the range of feature up to

Instead of directly averaging the predictions, ALE method calculates the prediction differences

conditionally to feature and integrates the derivative over features

Derivation and integration usually cancel each other out but here the derivative isolates the effect
of the feature of interest and blocks the effect of correlated features

By subtracting a constant, the ALE plot is centred so the average effect over the data is zero

where is some value chosen near the lower bound of the effective support of feature (not

crucial, since it only affects the vertical translation of the ALE and the constant in will be chosen to
vertically center the plot)

j x

j j

ALEj(x) = ∫
x

x0
j

𝔼X−j|Xj[∂ ̂f
∂xj

(Xj, X−j) | Xj = s]ds − constant

x0
j j

Accumulated Local Effects (ALE)
To estimate , let consider a sufficiently fine partition of the

sample range of (take the empirical quantiles of for)

The non-centered ALE is approximated with

where is the index of the interval into which falls, i.e.,

Three levels approximation:

 on the expectation (as for marginal plots)

 on the integral (sum on the intervals)

 on the derivative (finite differences)

ALEj(x) {Nj(k) =]zk−1, zk] | k = 1,2,...,K}
{xj,i}i=1…,n k/K {xj,i}i=1…,n zk

ÃLE j(x) ≈ ∫ x
x0

j

1
|Nj(s) |

∑i∈Nj(s)
∂ ̂f
∂xj

(s, X−j,i)ds

≈ ∑k(x)
k=1 (sk − sk−1) × 1

|Nj(s) |
∑i∈Nj(sk)

̂f(sk, Xi,−j)− ̂f(sk−1, Xi,−j)
sk − sk−1

≈ ∑k(x)
k=1

1
|Nj(s) |

∑i∈Nj(sk)
̂f(sk, Xi,−j) − ̂f(sk−1, Xi,−j) ,

k(x) x x ∈]sk−1, sk]

∙
∙ k(x)
∙

Accumulated Local Effects (ALE)
Finally, the ALE is centered so that the mean effect is zero:

 shows how the model predictions change in a small “window” of feature around for

data points in that window, it can be interpreted as the main effect of feature at compared to

the average prediction of the data

For example, an ALE estimate of 2 at means that when feature has value 3, then the

prediction is lower by 2 compared to the average prediction

Because of quantiles, intervals can have very different lengths (weird if is very skewed)

ALEj(x) = ÃLE j(x) −
n

∑
i=1

ÃLE j(Xj,i)

ALEj(x) j x

j x

Xj = 3 j

ALEj j

ALE for the interaction of two features and more

ALE plots can also show the interaction effect of two features and . The calculation are the

same (rectangular cells instead of intervals because effects are accumulated in two dimensions):

ALE for two features estimate the second-order effect, which does not include the main effects of

the features; it is the additional interaction effect of the features (if two features do not interact,

the 2D ALE should be close to zero)

PDPs always show the total effect, while ALE plots show the first - or second-order effect.

j1 j2

ALEj1,j2(x1, x2) = ∫
x1

x0
j1

∫
x2

x0
j2

𝔼X−j1,j2|Xj1,Xj2[∂2 ̂f
∂xj1∂xj2

(Xj1, Xj2, X−j1,j2) | Xj1 = s1, Xj2 = s2]ds1ds2 − constant

ALE for categorical features
ALE needs the feature values to have an order, because the method accumulates effects in a

certain direction

For a categorical features; an order has to be defined

It influences the calculation and interpretation of ALEs

 Order the categories according to their similarity based on the other features (sum over the

distances of each feature)

→

Pros and cons

ALE plots are

 unbiased (still work when features are correlated)

 faster to compute than PDPs

 easy to interpret, centered at zero and 2D ALE plot only shows the interaction

but they

 may be shaky with a high number of intervals (number of intervals makes the estimates more

stable but smooths the true complexity of the model)

 have a much more complex and less intuitive implementation compared to partial dependence

plots

∙

∙

∙

∙ ↘

∙

Feature importance
The importance of a feature is the increase in the model’s

prediction error after permuting the feature

Fisher et al. (2019) proposes the permutation feature

importance algorithm:

Estimate the original model error

For :

 Generate feature matrix by permuting in

 Estimate the error

 Calculate the feature importance

 or

ℓ0 = ℓ(Y, ̂f(X))
j = 1…, d

∙ Xj,perm j X

∙ ℓj,perm = ℓ(Y, ̂f(Xj,perm))
∙

FIj =
ℓj,schuffle

ℓ0
FIj = ℓj,perm − ℓ0

̂f(X)

̂f(Xj,perm)

Y

X

̂f

̂f

ℓ0

ℓj,perm

Feature importance - Training or testing data?
It depends on the expected values for the importance of a feature that has no relationship with

but for which the model has found one (i.e. over-fitting on this feature)

Should it be zero because the feature does not contribute to improved performance on unseen

test data?

 testing data is good choice

Should the importance reflect how much the model depends on the feature, regardless whether

the learned relationship generalize to unseen data?

 training data is good choice

Y

→

→

Example - Feature importance

Feature Importance on training set Importance on testing set
Temperature 2.1% 0.6%
Nebulosity 0.3% 0.0%
Humidity 0.8% 0.2%

Position in the year 2.2% 0.5%
Month 0.9% 0.1%

Half-hour 7.3% 4.6%
Day of the week 3.8% 2.4%

Holiday / Working dat 0.2% 0.1%
Type of Holiday 0.1% 0.0%

Holidays 0.4% 0.1%
Smoothed temperature short 9.5% 7.4%

Smoothed nebulosity 1.1% 0.1%
Smoothed humidity 3.1% 0.9%

Smoothed temperature long 2.0% 0.2%

Pros and cons
Feature importance

 provides a highly compressed, global insight into the model’s behaviour

 automatically takes into account all interactions with other features (the importance of the

interaction between two features is included in the importance measurements of both features...)

 does not require retraining the model (some other methods suggest deleting a feature,

retraining the model and then comparing the model error)

but it

 requires access to the true outcome

 depends on the permutation of the feature vector and might vary greatly (repeating the

permutation and averaging the importance measures over repetitions stabilises the measure)

 is biased by unrealistic data inputs when features are correlated

 decreases when a correlated feature is added

∙
∙

∙

∙ Y
∙

∙
∙

Surrogate model

A global surrogate model is an interpretable

model (linear model, decision tree, for e.g.)

 that is trained (using the data set than for

the original model training or a new one) to

approximate as accurately as possible the

predictions of the black box model

̂g

̂f

̂f

̂g

Pros and cons
Global Surrogate

 is flexible

 is very intuitive and straightforward

 comes with a measure of how good it approximates the black box model (R-squared, for e.g.)

but it

 draws conclusions about the model and not about the data, since it never sees the real

outcomes

 can very close to the original model for one subset of the data-set, but widely divergent for

another subset

 comes with all the advantages and disadvantages of the chosen interpretable model

∙
∙
∙

∙
Y

∙

∙

Shapley values
A prediction is explained by assuming that each feature value of the input is a “player” in a

collaborative game where the prediction is the payoff

Shapley values fairly distribute the “payoff”/prediction among the players/features (from

coalition game theory, Shapley 1953)

Example - linear model: the contribution of feature in the prediction is

and the prediction is the mean predicted value plus the sum of the contributions (which can be

negative):

j ̂f(x)
ϕj, ̂f (x) = ̂βjxj − ̂βj𝔼(Xj)

̂f(x) = 𝔼(̂f(X)) + ∑
j

ϕj, ̂f (x)

Shapley values in game theory
In a cooperative game, with the payoff of a coalition of players , the Shapley

value of player is

The Shapley value is the only attribution method that satisfies the properties of a fair payout:

 Efficiency: dividing by the number of players ensures that

 Symmetry: if then

 Dummy: if , then

 Additivity: for a game combined payouts , the respective Shapley values are

v(S) S ⊆ {1,2,…, p}
j

ϕj,v = 1

 number of players
∑ coalition including j

contribution of j to coalition
number of coalition including j

= 1
p ∑S⊆{1,2,…,p}\{j}

1

(p − 1
|S |)

(v(S ∪ {j}) − v(S))

∙ v({1,2,…, p}) =
p

∑
j=1

ϕj,v

∙ ∀S\{i, j}$, $v(S ∪ {i}) = v(S ∪ {j}) ϕi,v = ϕj,v

∙ ∀S\{i} v(S ∪ {i}) = v(S) ϕi,v = 0

∙ v + v′￼ ϕi,v + ϕi,v′￼

Shapley values for Machine Learning
Players = features and payoff = prediction

For a set of features taking values , as it is generally not possible to compute predictions

without the features , they are replaced in the calculation of

 is defined as the prediction for feature values in that are marginalised over features in :

For more than a few features in , the exact solution becomes problematic as the number of

possible coalitions exponentially increases

 Approximation with Monte-Carlo sampling (Štrumbelj and Kononenko, 2014) of the Shapley

value of a feature

x1, …, xp
̂f(x)

S xS

S̄ = {1,2,…, p}\S v(xS)

v(xS) xS S̄

v(xS) = 𝔼XS̄[̂f(xS, XS̄)]= ∫ ̂f(xS, XS̄)dℙXS̄

J

→

j

Shapley values approximation
For :

 Draw a random input from the data

 Pick a random subset of feature indices

 Construct the two inputs:

 Compute the contribution (corresponds to “ ” in the game theory

formulation of Shapley values):

Compute Shapley value as the average:

m = 1,…, M
∙ z
∙ J ⊆ {1,…, p}\{j}
∙

xm
+j = (xJ, z−J, xj)

xm
−j = (xJ, z−J, zj)

∙ v(S ∪ {i}) − v(S)

ϕm
j (x) = ̂f(xm

+j) − ̂f(xm
−j)

ϕj(x) =
1
M

M

∑
m=1

ϕm
j (x)

Pros and cons
Shapley values

 are efficient: the difference between the prediction and the average prediction is fairly

distributed among the feature values of the input and give a clear interpretation

 allows contrastive explanations: instead of comparing a prediction to the average prediction of

the entire data-set, it is possible to compare it to a subset or even to a single data point

 are the only explanation method with a solid theory

but they

 require a lot of computing time - only approximate solution are feasible

 return a simple value per feature, so it cannot be used to make statements about changes in

prediction for changes in the input

 require access to the data

 suffer from inclusion of unrealistic data points when features are strongly correlated

∙

∙

∙

∙
∙

∙
∙

Implementation

Example-based methods

̂f(X)X

̂f

Example-based explanation methods select particular

inputs of the data-set

 to explain the behaviour of machine learning models

 to explain the underlying data distribution

They explain a model by selecting inputs of the data-set

and not by creating summaries of features (model-

agnostic methods)

∙

∙

Counterfactual explanations
 How an input has to change to significantly change its prediction?

Counterfactual explanation = smallest change in the feature values that changes the prediction to

a predefined output - flip in predicted class (classification) or reaching some threshold (regression)

 Counterfactual should be as similar as possible to

 requires a distance measure between two inputs (Manhattan distance, e.g.)

 Counterfactual should have feature values that are likely

 Prediction has to change significantly

 requires a desired outcome

Wachter et al. (2017) suggests to minimise

∙ X′￼ X
→ d

∙ X′￼

∙
→ Y′￼

L(X, X′￼, Y′￼, λ) = λ(̂f(X′￼) − Y′￼)2 + d(X, X′￼)

Adversarial examples

Goodfellow, et al. Explaining and harnessing adversarial examples (ICLR 2015)

Adversarial examples are counterfactual examples used to fool machine learning model

Prototypes and Criticisms (Kim et al., 2016)
Prototypes: data input that is representative of all the dat

Maximum mean discrepancy method finds prototypes by minimising

,

where is a kernel function that measures the similarity of two inputs

Criticisms: data input that is not well represented by the set of prototype (extremes)

With,

criticisms are the extreme values of the witness function in both negative and positive directions

m z1, z2, …, zm

1
m2

m

∑
i=1

m

∑
j=1

k(zi, zj) −
2

mn

m

∑
i=1

n

∑
j=1

k(zi, xj) +
1
n2

n

∑
i=1

n

∑
j=1

k(xi, xj)

k

witness(x) =
1
n

n

∑
i=1

k(x, xi) −
1
m

m

∑
i=1

k(x, zi)

Prototypes and Criticisms

the prototype distribution overestimates the data distribution (a prototype

has been selected but there are only few data points nearby)

 the prototype distribution underestimates the data distribution (there are

many data points around but any prototypes nearby)

witness(x) =
1
n

n

∑
i=1

k(x, xi) −
1
m

m

∑
i=1

k(x, zi)

witness(x) > 0 →

witness(x) < 0 →
x

Prototypes and Criticisms

Prototypes and Criticisms are useful to

 Understand the data distribution

 Build a nearest prototype interpretable model:

 with

 Make a black box model interpretable by analysing the predictions of the prototypes and

criticisms: in which cases was the algorithm wrong?

∙

∙

̂f(x) = Yj⋆ j⋆ ∈ arg max
j=1…,m

k(x, zj)

∙

That’s all folks!

