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As electricity is hard to store, balance between production and demand  

must be strictly maintained 

Adapt production 

Optimization

Forecast demand  

Statistics

and



The energy and digital transition context 

New uses of electricity and electrification of numerous applications 

Massive development of intermittent renewables 

Increasingly rapid availability of data, smart meters and high-performance computing resources 

Raises new challenges 

Changes in electricity demand (energy crisis, sobriety, self-consumption, electric vehicles, 
increase from the current 450 TWh to 645 TWh according to « Energy Futures 2050 »...) 

Need for electrical flexibilities (from 13 to 17 GW in 2050) 

Explosion of artificial intelligence (increasingly complex and costly models) 



As electricity is hard to store, balance between production and demand  

must be strictly maintained 

 Adapt production  

Manage electrical flexibilities 
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1. Online learning for electrical system forecasting  
→ reconciliation of regional forecasts 

2. Reinforcement learning for demand side management   
→ algorithms for thermostatically controlled loads

3. Automated machine learning and explainability 
→ application to electrical demand forecasting models



1. Online reconciliation of 
electricity demand forecasts 

[1] Online Hierarchical Forecasting for Power Consumption Data, Margaux Brégère and Malo Huard, 
International Journal of Forecasting, 2022, IIF-Tao Hong Award   

[2] Spatio-temporal Clustering and Reconciliation for Regional Electricity Demand Forecasting, Margaux Brégère 
and Raffaele Mattera, Submitted, 2024

Malo Huard, Milvue
Raffaele Mattera, University of 

Campania Luigi Vanvitelli

https://margauxbregere.github.io/pdf/ijf20.pdf
https://forecasters.org/programs/research-awards/tao-hong-award/
https://margauxbregere.github.io/pdf/ijf24.pdf


  Forecasts needed at various aggregated levels 
France: managing the overall balance and planning 
cross-border exchanges 
Consumer type: designing offers 
Regions: dispatching electricity at network junctions 

  Benchmark forecasts at each aggregated levels  
France: easier to forecast (smoother) 
Consumer type: same behavior  
Regions: local weather  

∙

∙

 Correlated and connected times series through summation constraints 

 Reconciliation →

Motivation



Modeling
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From base forecasts  to reconciled ones:  ̂yt ỹt = Sb̃t
All linear methods can be written as : 

  projects base forecasts into bottom level disaggregated forecasts:  

  sums them:  

Minimum trace reconciliation (MinT - Wickramasuriya et al. 2019):  

assuming base forecast errors are stationary conditionally to data observed, the optimal 
reconciliation (which minimizes the variance of the reconciled forecast errors) is obtained for  

 with   

Remarks:   

• Stationarity implies unbiased base forecast 

• Reconciled forecasts will also be unbiased   

• Challenge: estimating the variance-covariance matrix of the base forecast errors  

ỹt = SP ̂yt

∙ P b̃t = P ̂yt

∙ S ỹt = Sb̃t

P = (STΣ†S)−1STΣ† Σ = 𝔼[(yt − ̂yt)(yt − ̂yt)T ]

⇔ SPS = S
Σ



Application: French electricity consumption



Base forecasts generation using online learning

→ 13 base forecasts with ̂yFrance
t ≠ ̂yNouvelle Aquitaine

t + ̂yBretagne
t + … + ̂y ̂Ile−de−France

t



Online MinT

Input 

• : delay in data reception 

• : window for the variance-covariance matrix of the base forecast errors estimation 

For  

• For each level  

Generate online base forecast  

• Compute online empirical covariance matrix 

    with    and  

• Reconcile base forecasts:   with  
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Results - 01.11.24 - 31.12.24

Model RMSE (MW) MAPE (%) Mean bias (MW)

Gam France 1 318 1.83 90

Gam Regions (Bottom-Up) 1 220 1.63 -77

Gam MinT 1 156 1.56 -31

Best model 1 128 1.51 -23

RTE D-2 1455 2.04 339

• Gam France: generalized additive model + Kalman filter on model effects 

• Gam Regions: Bottom up approaches based on 13 (one for each french region) generalized 
additive model + online linear regression on models effects  

• Gam MinT: Online MinT on using Gam Kalman (for France) and the 13 models (of the regions) 
of the bottom up approach as base forecasts  

• Best model: online aggregation of many models



Prospects
 Use city data (bi-level hierarchy) 

 Temporal and spatio-temporal reconciliation 

 Combine clustering with reconciliation 

 Reconciliation for probabilistic forecasts 

∙
∙
∙
∙

Gam France 
Gam MinT 
Gam Regions



2. Reinforcement learning for 
demand side management 

[3] Stochastic Bandit Algorithms for Demand Side Management, University of Paris Saclay (LMO, EDF R&D, Inria 
Paris), under the supervision of G. Stoltz, Y. Goude and P. Gaillard, 2020

• Demand Response: Send incentive signals → Bandits3 

• Demand Despatch: Control flexible devices 

Bianca Marin Moreno

Nadia Oudjane, EDF     Pierre Gaillard, Inria

https://hal-edf.archives-ouvertes.fr/tel-03059605v2


Mean Field Approach4

Control of  water heaters with same characteristics 
without compromising service quality

M

For water heater , day  and time of the day : 

State:   

Action: 

j t n
xn

j,t = (Temperaturen
j,t, ON/OFFn

j,t)
an

j,t = (Turn/Keep ON/OFFn
j,t)

[4]  (Online) Convex Optimization for Demand-Side Management: Application to Thermostatically 
Controlled Loads, Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, 2024

}New state depends on: 

Temperature evolution (deterministic PDE)  

 + Eventuel water drains (probabilistic law) 

 + Action to turn/keep ON/OFF (service quality)

Markov Decision Process (MDP) p

Mean Field assumption ( ): Control the state-action distribution  induces by a policy   M → ∞ μπ,p π



Control with Mean Field Approach
At each day  

For each water-heater  

Initialization:  

For each instant of the day   

Send to all water heaters action  

Observe new states  for all  and  

Loss function  is exposed 

Compute 
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Aim: Find  

with  the quadratic difference between the consumption for all water-heaters and the target at 
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CURL in online learning scenario5 

➤  Mirror-Descent approach for CURL (convex reinforcement learning) when  and  are 
known:  

 

p Ft = F
πMD(F, p)

[5]  Efficient Model-Based Concave Utility Reinforcement Learning through Greedy Mirror Descent, 
Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, AISTAT 2024

Initialization: policy  (nominal = without control) 

At each day  

… 

Update the estimation of the MDP using the new observations:  

Act if  and compute 

π1

t = 1,…, T

̂pt+1

Ft+1 = Ft πt+1 = πMD(Ft, ̂pt+1)



Extension: non-stationary MDP6 

[6]  MetaCURL: Non-stationary Concave Utility Reinforcement Learning, Bianca Marin Moreno, 
Margaux Brégère, Pierre Gaillard and Nadia Oudjane, NeurIPS, 2024

At each day  

 Restart previous algorithm  from 
the beginning:  

 Define a new policy by aggregating 

the  policies  

t = 1,…, T
∙ ℰ

ℰt

∙

t πt =
t

∑
s=1

ωs,tπs
t

 Constrained MDPs:  (work in progress) 

 Impact of the number of devices  on the control 

 Extension of the current work to smart charging 

∙ μπ,p
0 = μπ,p

N

∙ M
∙

Prospects

https://arxiv.org/pdf/2405.19807


3. Automated machine learning  
and Explainability

DRAGON  
 DiRected Acyclic Graphs  

OptimizatioN

XPC 
eXplainability through  
Positive Contributions

Julie Keisler Gaspard Berthelier



Train many 
neural network

Find the best 
neural network

Exploration Exploitation

Sequential learning for AutoML
Train a neural network is expensive and time-consuming 

Aim: for a search space  (set of possible architectures) 
and a budget , find the best neural network: 

  

At each round  

• Choose hyper-parameters  

• Train network  on  

• Observe the forecast error  

Output (best arm identification):  

Λ
T
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λ∈Λ

ℓ(fλ(𝒟
TEST))

t = 1,…, T

λt ∈ Λ

fλt
𝒟
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arg min
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𝒟
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[7]  A bandit approach with evolutionary operators for model selection: Application to neural 
architecture optimization for image classification, M. Brégère and J. Keisler, Submitted, 2024

https://hal.science/hal-04440552/document
https://hal.science/hal-04440552/document
https://hal.science/hal-04440552/document


Explainability of electricity demand forecasting models
Shapley value approach for positive component decomposition 

Each feature value is a “player” in a collaborative game where the prediction is the payoff 

4 115   

+ 32 205   

+ 11 503 

 =  

47 823 MW



Thank you!


