
Target Tracking for Contextual Bandits: 
Application to Demand Side Management

Margaux Brégère 

Joint work with Gilles Stoltz (Univ. Paris-Sud), Yannig
Goude (EDF R&D) and Pierre Gaillard (Inria)

April, 5. 2019

8ème Rencontres Jeunes Statisticiens



Introduction

Electricity is hard to store
▶ Maintain balance between production and demand
at any time

Current solution: Forecast consumption and adapt
production accordingly

▶ Renewable energies are subject to climate, making
production hard to adjust
▶ New communication tools (smart meters) lead to data
access and instantaneous communication

Future solution: Send incentive signals (electricity tariff
variations) to manage demand response

How to optimize these signals learning from clients
behaviors?



Introduction

Learn from clients behaviors & Optimize tariffs sending 
Exploration - Exploitation

trade-off

▶ Apply contextual-bandit theory to demand 
side management by offering price incentives



Bandit Models

In a multi-armed bandit problem, a gambler facing a row of 𝐾 slot machines
(also called "one-armed bandits") has to decide which 

machines to play to maximize her reward. 
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Stochastic Multi-Armed-Bandit Problem

Each arm (slot machine) 𝑘 has an unknown mean reward µ%
The mean reward of the best one is noted µ%∗

At each round t = 1,… , T the gambler

▸ Picks a machine I- ∈ {1, … , K}

▸ Receives a reward g-,34, with 𝔼[g-,34│I-	] = µ34

Maximizing the expected cumulative reward = Minimizing pseudo-regret

A good bandit algorithm has a sublinear pseudo-regret: 𝐑𝐓
𝐓
→ 𝟎

Mean reward if the best machine is known

Mean reward of the strategy

𝐑𝐓 = 𝐓	𝛍𝐤∗ − 	𝔼 A𝛍𝐈𝐭

𝐓

𝐭D𝟏



Bandit algorithm: Upper-Confidence-Bound (UCB)

Upper-Confidence-Bound strategy: explore and exploit sequentially all along the
experiment

▶ Build a confidence interval on the mean µ% based on past observations

Empirical reward: with

With probability at least 1 − tFG
(Hoeffding-Azuma Inequality)

▶ Be optimistic and act as if the best possible reward was the true reward and
choose the next arm accordingly

which ensures𝐈𝐭 = 𝐚𝐫𝐠	𝐦𝐚𝐱
𝐤∈{𝟏,…,𝐊}

		𝛍N𝐤,𝐭F𝟏 +
𝟐	𝐥𝐨𝐠	𝐭	
𝐍𝐤,𝐭F𝟏

�
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-FV

XDV

	

µ% ∈ 	µU%−
2 log 𝑡
𝑁_,`FV

�
		, µU%+

2 log 𝑡
𝑁_,`FV

�

𝐑𝐓 ≲ 	 𝐓𝑲𝐥𝐨𝐠𝐓�

(Lai et al. 1985) 





Stochastic Linear Bandits 

There is a unknown parameter vector 𝜃 ∈ ℝe
The reward is linear in the “arm vector”

At each round t = 1,… , T the gambler

▸ Picks a vector p- ∈ 𝒫 ⊂ Δj = pV,… , pj ∈ 0,1 j ∑ p%�
% = 1}

▸ Receives a reward g-,m4, with 𝔼 g-,no	 p-	 = p-pθ

𝐑𝐓 = 𝐓×𝐩⋆𝐓𝛉 − 	𝔼 A𝐩𝐭𝐓𝛉
𝐓

𝐭D𝟏



▸ Estimate parameters θ (Ridge regression) based on past observations

θv-FV = V-FVFV ∑ gX,mYpX
-FV
XDV with V-FV	 = λIj +	∑ pXpXp-FV

XDV

▸ Build confidence set for θ with high probability 
	 θv-FV − θ y4z{

≤ B- with  B- ∝ log t	�

thus, ppθ − ppθv-FV ≤ B- p y4z{z{

▶ Be optimistic
which ensures

θv-FV = arg	min
��

A gX,mY − 𝑝�
�θv �

-FV

XDV

+ λ θv �

θv

θ

𝐩𝐭 	= 𝐚𝐫𝐠	𝐦𝐚𝐱
𝐩∈𝓟

		𝐩𝐓𝛉�𝐭F𝟏 + 𝐁𝐭 𝐩 𝐕𝐭z𝟏
z𝟏

Bandit algorithm: LinUCB (Li et al., 2010) 

𝐑𝐓 ≲ 	 𝐓𝐊 𝐥𝐨𝐠𝟑 𝐓
�



Stochastic Bandits with context 

There is a set of contextual variables 𝓧
Each arm (slot machine) 𝑘 has an unknown mean reward 𝛍𝐤 𝐱 , 𝐱 ∈ 𝓧

At each round t = 1,… , T the gambler

▸ Observes a context 𝑥-

▸ Picks a machine I- ∈ {1, … , K}

▸ Receives a reward g-,34, with 𝔼[g-,�o│I-	] = µ34(x-)

Rp =Aµ%4⋆(x-) 
𝐓

𝐭D𝟏

− 	𝔼 Aµ34(x-) 
p

-DV



Stochastic Linear Bandits with context 

There is a unknown parameter vector 𝛉 ∈ ℝ𝐝
The reward is linear in the feature vectors

At each round t = 1,… , T the gambler

▸ Observes a context 𝑥-, a set 𝒫 ⊂ Δj of arms and feature vectors 𝛟(𝐱𝐭, 𝐩) ∈ ℝ𝐝, p ∈ 𝒫
The vector ϕ(x-, p) summarizes information of both the context x- and arm p.

▸ Picks a vector p- ∈ 𝒫

▸ Receives a reward g-, with 𝔼 g- p-	 = ϕ x-, p- pθ

Rp =Aϕ x-, 𝐩𝐭⋆ pθ
𝐓

𝐭D𝟏

− 	𝔼 Aϕ x-, p- pθ
p

-DV



Smart Meter Energy Consumption Data in London Households 

“Smart Meter Energy Consumption Data in London Households” 
Public dataset - UK Power Networks

Individual consumption at half-an-hour intervals throughout 2013 of 

~1 000 clients subjected to Dynamic Time of Use energy prices

Three tariffs: Low (L), Normal (N), High (H)



Tariff impact 



General Additive Model for power consumption

+ + + …

Temperature Position in the year Hour

Y- = fV temperature + f� position	in	the	year + fG hour + f� tariff +	…+ 	noise

→  There is a known transfer function ϕ and an unknown parameter θ such that 

𝔼 𝐘 = 𝛟 𝐗 𝐓𝛉



General Additive Model for power consumption

Observation
Estimation



Consumption modelling 

Assumption:

▸ 𝐾 tariffs 

▸ Homogenous population 

At each round 𝑡 = 1,…

▸ Observe a context  𝑥` ∈ 𝒳

▸ Choose proportions p- ∈ 𝒫 ⊂ Δj = pV,… , pj ∈ 0,1 j ∑ p%�
% = 1}

▸ Observe the consumption 𝐘𝐭,𝐩𝐭 = 𝛟 𝐱𝐭, 𝐩𝐭 𝐓𝛉 + 𝐩𝐭𝑻𝛆𝐭

with 𝔼[ε-] = 0,…0 � and 𝕍 ε- = Γ ∈ ℳe(ℝ)



Protocol: Target tracking for contextual bandits 

Input:

▸ Transfer function ϕ: 	𝒳	×	𝒫	 → ℝª

Unknown parameters:

▸ Transfer parameter θ ∈ 	ℝª and covariance matrix Γ ∈ 	ℳj(ℝ)

At each round 𝑡 = 1,…

▸ Observe a context 𝑥` ∈ 𝒳 and a target 𝑐`

▸ Choose a vector p- ∈ 𝒫 ⊂ Δj = pV,… , pj ∈ 0,1 j ∑ p%�
% = 1}

▸ Observe a resulting consumption Y-,no = ϕ x-, p- pθ + p-pε- with 𝕍 ε- = Γ

▸ Suffer a loss ℓ` = Y-,m4 − c-
�



Minimize pseudo-regret – Estimate losses

Aim: Minimize the pseudo-regret (compare to the best strategy)

ℓ-,m = 	𝔼 Y-,m − c-
� = ϕ x-, p pθ − c-

� + ppΓp

𝐑𝐓 =Aℓ𝒕,𝒑𝒕

𝐓

𝐭D𝟏

−	A𝐦𝐢𝐧
𝐩∈𝓟

ℓ𝒕,𝒑

𝐓

𝐭D𝟏

with

▸ Reach a bias-variance trade-off
▸ Estimate parameters θ and Γ to estimate losses !



Optimistic algorithm for tracking target with context

▸ Estimate parameters θ (Ridge regression) and Γ (Γv-FV provided in the article) 

θv-FV = V-FVFV ∑ YX,mYϕ xX, pX-FV
XDV with V-FV	 = λIª +	∑ ϕ xX, pX ϕ xX, pX p-FV

XDV

▸ Build confidence sets for θ and Γ

θv-FV − θ y4z{
≤ B- and Γv-FV − Γ ² ≤ γ-

θv-FV = arg	min
��

A YX,mY − ϕ xX, pX pθv �
-FV

XDV

+ λ θv �

θv

θ



Optimistic algorithm for tracking target with context

▸ Estimate the future loss ℓ-,m for each price level

As ℓ-,m = 	𝔼 Y-,m − c-
� = ϕ x-, p pθ − c-

� + ppΓp

ℓv-,m = ϕ x-, p pθv-FV − c-
� + ppΓv-FVp

▸ Get a confidence bound for losses for each p thanks to B-and γ-

ℓv-,m − ℓ-,m ≤ α-,m



Optimistic algorithm for tracking target with context
Inspired from Lin-UCB (Li et al. 2010)

▸ Estimate parameters θ and Γ from observations (Γv-FV provided in the article)

▸ Estimate the future loss ℓ-,m for each price level 

ℓv-,m = ϕ x-, p pθv-FV − c-
� + ppΓv-FVp

▸ Build confidence sets for θ and Γ

▸ Get a confidence bound for losses for each p
ℓv-,m − ℓ-,m ≤ α-,m

▸ Select price level optimistically

𝐩𝐭 ∈ 𝐚𝐫𝐠	𝐦𝐢𝐧
𝐩∈𝓟

ℓv𝐭,𝐩 − 𝛂𝐭,𝐩

ℓv-,m

α-,m



Theoretical guarantee

For proper choices of confidence levels 𝛼`,n, 𝐵`, 𝛾` and regularisation 𝜆, 
with probability at least 𝟏 − 𝛅 the regret is upper bounded as

Rp =Aℓ-,m4

p

-DV

−	Amin
m∈𝒫

ℓ-,m4 ≲
p

-DV

	𝐓𝟐/𝟑ln�	(T/δ) ln(1/δ)�

Limitation 
The optimization problem p- ∈ arg	min

m∈𝒫
ℓv-,m − α-,m is nonconvex and hard to solve.

▸ Restrict 𝒫

Theorem



Back to data !

▸ “Smart-Meter Energy Consumption Data in London Households” 
A single tariff - Low (L), Normal (N) or High (H) - is offered to all the population for 
each half hour interval. 

▸ Select customers with more than 95% of data available (980 clients) and consider 
their mean consumption. 

▸ Build a realistic simulator (based on Generalized Additive Model) assuming 
homogeneous customers

Context + Price level → Global consumption 



Simulator



Design of the experiment

▸ Target creation: attainable targets which stay in the convex envelope of the mean
consumption associated to the High and Low tariffs

▸ 𝓟 restriction (to a grid): electricity provider cannot send Low and High tariffs at the
same round and the population can be split in 100 equal parts

▸ Training period: one year of data using historical contexts and assuming that only
Normal tariff is picked

▸ Testing period: for an additional month (based on the historical contexts) tariffs are
picked according to the algorithm



Results: overlap the target

Tue. Jan. 1 Wed. Jan. 2

Low−tariff mean consumption
Normal−tariff mean consumption
High−tariff mean consumption

Tue. Jan. 29 Wed. Jan. 30

0.10

0.15

0.20

0.25

0.30

0.35

Expected mean consumption (approx.)
Target consumption



Result: bias-variance trade-off

Tue. Jan. 1 Wed. Jan. 2

Low−tariff mean consumption
Normal−tariff mean consumption
High−tariff mean consumption

Tue. Jan. 29 Wed. Jan. 30

0.10

0.15

0.20

0.25

0.30

0.35

Expected mean consumption (approx.)
Target consumption



Result: what about pseudo-regret ?

Tue. Jan. 1 Tue. Jan. 8 Tue. Jan. 15 Tue. Jan. 22 Tue. Jan. 29

0.00

0.05

0.10

0.15

0.20

0.25

~ T ln(T)
   Pseudo−regret



Conclusions and perspectives

Summary
▸ Design, implement and test an efficient algorithm with

theoretical guaranties to track a target consumption
under basic assumptions.

What’s next?
▸ More experiments, simulations
▸ Non homogeneous consumers: create client clusters to

send individual signals (device dependent, clients with
battery) and improve power consumption control.
▸ More complex models? Anticipation of future high

prices, ...
▸ Operational constraints
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