Margaux Brégère - December, 5th 2024

Sequential and reinforcement learning for demand side management

ESSEC - WORKSHOP: « FORECASTING & OPTIMIZATION: STREAMLINING SUPPLY CHAINS »

Introduction

Demand side management

Electricity is hard to store \rightarrow production - demand balance must be strictly maintained

Current solution: forecast demand and adapt production accordingly

• Renewable energies development

→ production harder to adjust

• New (smart) meters \rightarrow access to data and instantaneous communication

Prospective solutions: manage demand

→ Demand Response: Send incentive signals

→ Demand Despatch: Control flexible devices

Stochastic Bandit Algorithms for Demand Response

Gilles Stoltz Yannig Goude Pierre Gaillard

Demand side management with incentive signals

- The environment (consumer behavior) is discovered through $interactions$ (incentive signal choices) \rightarrow Reinforcement learning
- How to develop automatic solutions to chose incentive signals dynamically?

Exploration: Learn consumer behavior Exploitation: Optimize signal sending

> « Smart Meter Energy Consumption Data in London Households »

Stochastic multi-armed bandits

Stochastic multi-armed bandits

In a multi-armed bandit problem, a gambler facing a row of K slot machines (also called one-armed bandits) has to decide which machines to play to maximize her reward

> Exploration:Test many arms

Exploitation: Play the « best » arm

Exploration - Exploitation trade-off

Stochastic multi-armed bandit

- Each arm k is defined by an unknown probability distribution ν_k $For t = 1, ..., T$
	- Pick an arm $I_t \in \{1,...,K\}$
	- Receive a random reward Y_t with $Y_t | I_t = k \sim \nu_k$

Maximize the cumulative reward \Leftrightarrow Minimize the regret, i.e., the difference, in expectation, between the cumulative reward of the best strategy and that of ours:

$$
R_T = T \max_{k=1,\dots,K} \mu_k - \mathbb{E}\left[\sum_{t=1}^T \mu_{I_t}\right], \text{ with } \mu_k = \mathbb{E}\left[\nu_k\right]
$$

m has a sub-linear regret: $\frac{R_T}{T} \to 0$

T

A good bandit algorithr

$$
= k \sim \nu_k
$$

Upper Confidence Bound algorithm1

Initialization: pick each arm once

 $For t = K + 1, ..., T:$

• Estimate the expected reward of each arm k with $\hat{\mu}_{k,t-1}$ (empirical mean of past rewards)

• Build some confidence intervals around these estimations: $\mu_k \in [\hat{\mu}_{k,t-1} - \alpha_{k,t}, \hat{\mu}_{k,t-1} + \alpha_{k,t}]$ with high probability ̂ ̂

• Be optimistic and act as if the best possible probable reward was the true reward and choose the next arm accordingly

$$
I_t \in \arg \max_{k} \left\{ \hat{\mu}_{k,t-1} + \alpha_{k,t} \right\}
$$

[1] Finite-time analysis of the multi-armed bandit problem, Peter Auer, Nicolo Cesa-Bianchi, Paul Fischer, Machine learning, 2002

UCB regret bound

The empirical means based on past rewards are: $\hat{\mu}_{k,t-1} =$ ̂ 1 *Nk*,*t*−¹ *t*−1 ∑ $Y_s \mathbf{1}_{\{I_s\}}$

With Hoeffding-Azuma Inequality, we get

And be optimistic ensures that

$$
I_{s=k} \text{ with } N_{k,t-1} = \sum_{s=1}^{t-1} 1_{\{I_{s}=k\}}
$$

 $R_T \lesssim \sqrt{TK \log T}$

s=1

$$
\mathbb{P}\left(\mu_k \in \left[\hat{\mu}_{k,t-1} - \alpha_{k,t}, \hat{\mu}_{k,t-1} + \alpha_{k,t}\right]\right) \ge 1 - t^{-3} \text{ with } \alpha_{k,t} = \sqrt{\frac{2\log t}{N_{k,t-1}}}
$$

A Bandit Approach for Demand Response

Demand side management with incentive signals

 $For t = 1, \ldots, T$

- Observe a context x_t and a target c_t
- Choose price levels p_t
- Observe the resulting electricity demand

 $Y_t = f(x_t, p_t) + \text{noise}(p_t)$

and suffer the loss $\mathscr{C}(Y_t, c_t)$

Assumptions:

• Homogenous population, K tariffs, $p_t \in \Delta_K$

• $f(x_t, p_t) = \phi(x_t, p_t)^T \theta$ with ϕ a known mapping function and θ an unknown vector to estimate

• noise(p_t) = $p_t^T \varepsilon_t$ with $\mathbb{V}[\varepsilon_t] = \Sigma$

$$
\bullet \mathscr{C}(Y_t, c_t) = (Y_t - c_t)^2
$$

xt

Bandit algorithm for target tracking

Under these assumptions: $\mathbb{E} \Big| \left(Y_t - c_t \right)^2 \Big| \text{ past}, x_t \Big|$

[®] Estimate parameters θ and Σ to estimate losses and reach a bias-variance trade-off

Optimistic algorithm:

 $\mathsf{For}\ t=1,...,\tau$

 \bullet Select price levels deterministically to estimate Σ offline with Σ_{τ}

For $t = \tau + 1, ..., T$

-
- Estimate future expected loss for each price level p : $\mathcal{C}_{p,t} = (\phi(x_t, p))$
- Get confidence bound on these estimations: $| \ell_{p,t} \ell_p | \leq \alpha_{p,t}$
- Select price levels optimistically:

 \bullet Estimate θ based on past observation with θ_{t-1} thanks to a Ridge regression ̂ ̂ $\mathrm{T}\hat{\boldsymbol{\theta}}$ $(\hat{\theta}_{t-1} - c_t)^2 + p^T \hat{\Sigma}_t p$ ̂

$$
x_t, p_t \Big| = (\phi(x_t, p_t)^T \theta - c_t)^2 + p_t^T \Sigma p_t
$$

$$
p_t \in \arg\min_p \left\{ \hat{e}_{p,t} - \alpha_{p,t} \right\}
$$

 $\ell_{p,t}: p \mapsto (\phi(x_t, p))$ $\mathrm{T}\hat{\boldsymbol{\theta}}$ $(\hat{\theta}_{t-1} - c_t)^2 + p^T \hat{\Sigma}_t p$ ̂

The problem is a bit more complex: curves vary with time *t*

Regret bound3 $R_T = \mathbb{E}$ *T* ∑ *t*=1 $(Y_t - c_t)^2$ – min *p* $(Y(p) - c_t)^2$ = *T* ∑ *t*=1

[3] [Target Tracking for Contextual Bandits : Application to Demand Side Management,](https://proceedings.mlr.press/v97/bregere19a/bregere19a.pdf) Margaux Brégère, Pierre Gaillard, Yannig Goude and Gilles Stoltz, ICML, 2019

 probability $R_T \leq O(T^{2/3})$

If Σ is known, Σ is known, $R_T\leq \mathscr{O}(\sqrt{T\ln T})$

$$
\mathbb{E}\left[\sum_{t=1}^{T} (Y_t - c_t)^2 - \min_{p} (Y(p) - c_t)^2\right] = \sum_{t=1}^{T} (\phi(x_t, p_t)^T \theta - c_t)^2 + p_t^T \Sigma p_t - \sum_{t=1}^{T} \min_{p} (\phi(x_t, p)^T \theta - c_t)^2 + p^T \Sigma
$$

\n**Theorem**
\nFor proper choices of confidence levels $\alpha_{p,t}$ and number of exploration rounds τ , with high probability $R_T \leq \mathcal{O}(T^{2/3})$
\nIf Σ is known, $R_T \leq \mathcal{O}(\sqrt{T} \ln T)$

[4] Laplace's method on supermartingales: Improved algorithms for linear stochastic bandits, Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári, NeuRIPS, 2011

[5] Contextual bandits with linear payoff functions , Wei Chu, Li Lihong, Lev Reyzin, and Robert Schapire., JMLR 2011

Theorem

Elements of proof

- Deviation inequalities on $\theta_t^{\:4}$ and on Σ_{τ} ̂ ̂
	- Inspired from LinUCB regret bound analysis⁵

Application

- Low-tariff mean consumption
- Normal-tariff mean consumption
- High-tariff mean consumption

Tue. Jan. 1

Wed. Jan. 30

Extension: personalized demand side management

Online Optimization for Flexible Thermostatically Devices Control

Bianca Marin Moreno PhD

Mean Field Approach

For each water heater j , day t , time of the day n : State: $x_{i,j}^n$ Action: *an* $\sum_{j,t}^{n} = (\text{Temperature}_{j,t}^{n})$, ON/OFF*ⁿ j*,*t*) $\sum_{j,t}^{n} = (\text{Turn/Keep}^n \text{ ON/OFF}_{j,t}^n)$

Control of M water heaters with same characteristics without compromising service quality

New state depends on:

Temperature evolution (deterministic PDE)

+ Eventuel water drains (probabilistic law)

+ Action to turn/keep ON/OFF (service quality) Temperature evolution (deterministic PDE) + Eventuel water drains (probabilistic law) + Action to turn/keep ON/OFF (service quality)

[5] [\(Online\) Convex Optimization for Demand-Side Management: Application to Thermostatically Controlled Loads](https://hal-cnrs.archives-ouvertes.fr/LJK/hal-03972660v1), Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, 2024

Mean Field assumption ($M \to \infty$): Control the state-action distribution $\mu^{\pi,p}$ induces by a policy π in p

Control with Mean Field Approach⁵

At each day $t=1,...,T$ For each water-heater $j = 1,...,M$ Initialization: (x_i^0) For each instant of the day $n = 1,...,N$ Send to all water heaters action $a_{i,j}^n$ Loss function $F_t(\mu^{\pi_t, p})$ is exposed Compute *j*,*t* $, a_{i,j}^0$ μ _{*j*,*t*},) ∼ μ ₀ *j*,*t* $\pi_{t+1} = (\pi_{t+1}^1, ..., \pi_{t+1}^N)$

[5] [\(Online\) Convex Optimization for Demand-Side Management: Application to Thermostatically Controlled Loads](https://hal-cnrs.archives-ouvertes.fr/LJK/hal-03972660v1), Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, 2024

$$
\text{Aim:} \text{ Find } \pi^{\star} \in \text{argmin}_{\pi} \sum_{t=1}^{T} F_t(\mu^{\pi, p})
$$

with F_t the quadratic difference between the consumption for all water-heaters and the target at t

CURL in online learning scenario⁶

Mirror-Descent approach for CURL (convex reinforcement learning) when p and $F_t = F$ are known: $\pi^{\text{MD}}(F, p)$

[6] Efficient Model-Based Concave Utility Reinforcement Learning through Greedy Mirror Descent, Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, AISTAT 2024

At each day $t=1,...,T$ For each water-heater $j = 1,...,M$ Initialization: (x_i^0) For each instant of the day $n = 1,...,N$ Send to all water heaters action $a_{i,j}^n$ Loss function $F_t(\mu^{\pi_t, p})$ is exposed *j*,*t* $, a_{i,j}^0$ $(\frac{0}{j,t})$ ∼ μ_0 *j*,*t*

Update the estimation of the MDP using the

Act if $F_{t+1} = F_t$ and compute $F_{t+1} = F_t$ and compute $\pi_{t+1} = \pi^{\text{MD}}(F_t, \hat{p}_{t+1})$

$$
\sim \pi_t^n(\cdot | x_{j,t}^n)
$$

he new observations:
$$
\hat{p}_{t+1} = \frac{1}{M(t+1)} \sum_{j=1}^{M} \delta_j + \frac{t}{t+1}
$$

 F_t, \hat{p}_{t+1}

Extension: non-stationary MDP7

At each day $t=1,...,T$

[7] [MetaCURL: Non-stationary Concave Utility Reinforcement Learning](https://arxiv.org/pdf/2405.19807), Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, NeurIPS, 2024

That's all folks!