
Margaux Brégère - December, 5th  2024

Sequential and reinforcement learning for 
demand side management

ESSEC - WORKSHOP:  « FORECASTING & OPTIMIZATION: 
STREAMLINING SUPPLY CHAINS »  



Introduction



Demand side management

Current solution: forecast demand and adapt 
production accordingly  

• Renewable energies development  

 production harder to adjust  

• New (smart) meters  access to data and 
instantaneous communication  

Prospective solutions: manage demand 

 Demand Response: Send incentive signals  

 Demand Despatch: Control flexible devices 

→
→

→
→

Electricity is hard to store  production - demand balance must be strictly maintained →
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Demand side management with incentive signals

The environment (consumer behavior) is discovered through 
 interactions (incentive signal choices)  Reinforcement learning 

How to develop automatic solutions to chose incentive signals dynamically?  

→

Exploration: Learn 
consumer behavior

Exploitation: Optimize 
signal sending  

« Smart Meter Energy Consumption 
Data in London Households »



Stochastic multi-armed bandits



Stochastic multi-armed bandits
In a multi-armed bandit problem, a gambler facing a row of  slot machines  

(also called one-armed bandits) has to decide which machines to play to 
maximize her reward

K

Exploration:Test  
many arms

Exploitation: Play 
 the « best » arm

Exploration - Exploitation trade-off



Stochastic multi-armed bandit

Each arm  is defined by an unknown probability distribution  

For  

• Pick an arm    

• Receive a random reward  with  

Maximize the cumulative reward  Minimize the regret, i.e., the difference, in expectation, 

between the cumulative reward of the best strategy and that of ours:  

 , with  

A good bandit algorithm has a sub-linear regret: 

k νk

t = 1,…, T
It ∈ {1,…, K}

Yt Yt | It = k ∼ νk

⇔

RT = T max
k=1,…,K

μk − 𝔼[
T

∑
t=1

μIt] μk = 𝔼[ νk ]
RT

T
→ 0



Upper Confidence Bound algorithm1

Initialization: pick each arm once 

For : 

• Estimate the expected reward of each arm  with  
(empirical mean of past rewards) 

• Build some confidence intervals around these 
estimations:  with high 
probability 

• Be optimistic and act as if the best possible probable 
reward was the true reward and choose the next arm 
accordingly 

 

t = K + 1,…, T

k ̂μk,t−1

μk ∈ [ ̂μk,t−1 − αk,t , ̂μk,t−1 + αk,t]

It ∈ arg max
k { ̂μk,t−1 + αk,t}

[1] Finite-time analysis of the multi-armed bandit problem, Peter Auer, Nicolo Cesa-Bianchi, Paul Fischer, Machine 
learning, 2002



UCB regret bound

The empirical means based on past rewards are:  

   with   

With Hoeffding-Azuma Inequality, we get 

  with    

And be optimistic ensures that  

̂μk,t−1 =
1

Nk,t−1

t−1

∑
s=1

Ys1{Is=k} Nk,t−1 =
t−1

∑
s=1

1{Is=k}

ℙ ( μk ∈ [ ̂μk,t−1 − αk,t , ̂μk,t−1 + αk,t] ) ≥ 1 − t−3 αk,t =
2 log t
Nk,t−1

RT ≲ TK log T



A Bandit Approach for Demand Response



Demand side management with incentive signals
For  

• Observe a context  and a target  

• Choose price levels  

• Observe the resulting electricity demand  

 

and suffer the loss   

t = 1,…, T
xt ct

pt

Yt = f(xt, pt) + noise(pt)
ℓ(Yt, ct )

Assumptions: 

• Homogenous population,  tariffs,  

•  with  a known mapping 
function and  an unknown vector to estimate 

•  with  

• 

K pt ∈ ΔK

f(xt, pt) = ϕ(xt, pt)Tθ ϕ
θ

noise(pt) = pT
t εt 𝕍[εt] = Σ

ℓ(Yt, ct ) = ( Yt − ct )2

pt

ct

xt

Yt



Bandit algorithm for target tracking 
Under these assumptions:  

☞ Estimate parameters  and  to estimate losses and reach a bias-variance trade-off  

Optimistic algorithm:  

For  

• Select price levels deterministically to estimate  offline with  

For  

• Estimate  based on past observation with  thanks to a Ridge regression 

• Estimate future expected loss for each price level :  

• Get confidence bound on these estimations:  

• Select price levels optimistically:  

𝔼[ (Yt − ct)2 past, xt, pt ] = (ϕ(xt, pt)Tθ − ct)2 + pT
t Σpt

θ Σ

t = 1,…, τ

Σ Σ̂τ

t = τ + 1,…, T

θ ̂θt−1

p ̂ℓp,t = (ϕ(xt, p)T ̂θt−1 − ct)2 + pTΣ̂τ p

| ̂ℓp,t − ℓp | ≤ αp,t

pt ∈ arg min
p

{ ̂ℓp,t − αp,t}



αp,t

ℓp,t : p ↦ (ϕ(xt, p)Tθ − ct)2 + pTΣp

̂ℓp,t : p ↦ (ϕ(xt, p)T ̂θt−1 − ct)2 + pTΣ̂τ p





The problem is a bit more complex: curves vary with time  t



Regret bound3

RT = 𝔼[
T

∑
t=1

(Yt − ct)2 − min
p

(Y(p) − ct)2] =
T

∑
t=1

(ϕ(xt, pt)Tθ − ct)2 + pT
t Σpt −

T

∑
t=1

min
p

(ϕ(xt, p)Tθ − ct)2 + pTΣp

[3] Target Tracking for Contextual Bandits : Application to Demand Side Management, Margaux Brégère, Pierre Gaillard, Yannig 
Goude and Gilles Stoltz, ICML, 2019 
[4] Laplace’s method on supermartingales: Improved algorithms for linear stochastic bandits, Yasin Abbasi-Yadkori, Dávid Pál, and 
Csaba Szepesvári, NeuRIPS, 2011 
[5] Contextual bandits with linear payoff functions , Wei Chu, Li Lihong, Lev Reyzin, and Robert Schapire., JMLR 2011

 Theorem 
 For proper choices of confidence levels  and number of exploration rounds , with high    

 probability   

 If  is known, 

αp,t τ

RT ≤ 𝒪(T2/3)

Σ RT ≤ 𝒪( T ln T)
Elements of proof 
   • Deviation inequalities on 4 and on  
   • Inspired from LinUCB regret bound analysis5   

̂θt Σ̂τ

https://proceedings.mlr.press/v97/bregere19a/bregere19a.pdf


Application



Extension: personalized demand side management  



Online Optimization for Flexible 
Thermostatically Devices Control

Bianca Marin Moreno PhD



Mean Field Approach

Control of  water heaters with same characteristics 
without compromising service quality

M

For each water heater , day , time of the day : 

State:   

Action: 

j t n
xn

j,t = (Temperaturen
j,t, ON/OFFn

j,t)
an

j,t = (Turn/Keepn ON/OFFn
j,t)

[5] (Online) Convex Optimization for Demand-Side Management: Application to Thermostatically Controlled Loads, 
Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, 2024

}New state depends on: 

Temperature evolution (deterministic PDE)  

 + Eventuel water drains (probabilistic law) 

 + Action to turn/keep ON/OFF (service quality)

Markov Decision Process (MDP) p

Mean Field assumption ( ): Control the state-action distribution  induces by a policy  in  M → ∞ μπ,p π p

https://hal-cnrs.archives-ouvertes.fr/LJK/hal-03972660v1


Control with Mean Field Approach5

At each day  

For each water-heater  

Initialization:  

For each instant of the day   

Send to all water heaters action  

Loss function  is exposed 

Compute 

t = 1,…, T
j = 1,…, M

(x0
j,t, a0

j,t,) ∼ μ0

n = 1,…, N
an

j,t ∼ πn
t ( ⋅ |xn

j,t)
Ft(μπt,p)

πt+1 = (π1
t+1, …πN

t+1)

[5] (Online) Convex Optimization for Demand-Side Management: Application to Thermostatically Controlled Loads, 
Bianca Marin Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, 2024

Aim: Find  

with  the quadratic difference between the consumption for all water-heaters and the target at 

π⋆ ∈ argminπ

T

∑
t=1

Ft(μπ,p)
Ft t

ON ON OFF ON

OFF ON OFF ON

TURN  
OFF

TURN  
OFFaj,t

xj,t−1

xj,t

https://hal-cnrs.archives-ouvertes.fr/LJK/hal-03972660v1


CURL in online learning scenario6 

Mirror-Descent approach for CURL (convex reinforcement learning) when  and  are known: 
 

 

p Ft = F
πMD(F, p)

[6] Efficient Model-Based Concave Utility Reinforcement Learning through Greedy Mirror Descent, Bianca Marin 
Moreno, Margaux Brégère, Pierre Gaillard and Nadia Oudjane, AISTAT 2024

At each day  

For each water-heater  

Initialization:  

For each instant of the day   

Send to all water heaters action  

Loss function  is exposed 

Update the estimation of the MDP using the new observations:  

Act if  and compute 

t = 1,…, T
j = 1,…, M

(x0
j,t, a0

j,t,) ∼ μ0

n = 1,…, N
an

j,t ∼ πn
t ( ⋅ |xn

j,t)
Ft(μπt,p)

̂pt+1 =
1

M(t + 1)

M

∑
j=1

δj +
t

t + 1
̂pt

Ft+1 = Ft πt+1 = πMD(Ft, ̂pt+1)



Extension: non-stationary MDP7 

[7] MetaCURL: Non-stationary Concave Utility Reinforcement Learning, Bianca Marin Moreno, Margaux Brégère, 
Pierre Gaillard and Nadia Oudjane, NeurIPS, 2024

At each day  

Restart previous algorithm  from the beginning:  

Define a new policy by averaging the  policies  

t = 1,…, T
ℰ ℰt

t πt =
t

∑
s=1

ωs,tπs
t

https://arxiv.org/pdf/2405.19807


That's all folks!


