Online hierarchical forecasting for power consumption data

ENBIS - September 13, 2021

Margaux Brégère

Joint work with Malo Huard

Presentation based on the article [Brégère, M., & Huard, M. (2021). Online hierarchical forecasting for power consumption data. International Journal of Forecasting.]

Motivation

Electricity forecasting at various aggregated levels

- Benchmark forecasts at each aggregated levels → Classical technics (GAM)
- Correlated time series (e.g., consumption of surrounding regions may be close) → Aggregation
- Connected times series through summation constraints (e.g., the global consumption is the sum of each region's consumption) → Projection

Introduction

Theoretical Result

Practical Example

imple Ex

Experiments Conclusion

Literature discussion

<u>Aggregation</u> = combination of forecasts independently of their generating process

- Introduced by Vovk (1990), Cover (1991), and Littlestone and Warmuth, (1994).
- Effective at predicting
 - Time series (e.g., Mallet, Stoltz, & Mauricette, 2009)
 - Electricity consumption (Devaine, Gaillard, Goude, & Stoltz, 2013 and Gaillard, Goude, and Nedellec, 2016 forecasting competition won)
- Recently extended to the hierarchical setting (Goehry, Goude, Massart, and Poggi, 2020)

Hierarchical forecasting

- Bottom-up (Dunn, Williams, and DeChaine, 1976) and top-down approaches (Gross and Sohl, 1990)
- Reconciliation of the set of forecasts with
 - \circ Orthogonal or oblique projection (Wickramasuriya, Athanasopoulos, and Hyndman, 2019 general minimum trace MinT algorithm)
 - o Game-theoretically procedure (Van Erven and Cugliari, 2015)

Introduction

Theoretical Result

Practical Example

Experiments

Modeling hierarchical relationships

$$Y_{t}^{TOT} = y^{\cdot, 1} + y^{\cdot, 2} \dots + y^{\cdot, k}$$

$$y_{t}^{\cdot, j} = y^{1, j} + y^{2, j} \dots + y^{n, j}, \quad \forall j = 1, \dots, k$$

$$y_{t}^{TOT} = y^{1, \cdot} + y^{2, \cdot} \dots + y^{n, \cdot}$$

$$y_{t}^{i, \cdot} = y^{i, 1} + y^{i, 2} \dots + y^{i, k}, \quad \forall i = 1, \dots, n$$

Three-step forecasting approach

Γ = nodes of the trees

Introduction Methodology Theoretical Result Practical Example

Experiments

Algorithm

Input

- Set Γ and constraint matrix **K**
- Benchmark forecast generation method = Generalized additive models
- Aggregation algorithm ${\mathcal A}$

Compute the orthogonal projection matrix $\Pi_{\mathbf{K}} = (\mathbf{I}_{|\Gamma|} - \mathbf{K}^{\mathrm{T}} (\mathbf{K} \mathbf{K}^{\mathrm{T}})^{-1} \mathbf{K})$

For $\gamma \in \Gamma$ do

- Create a copy of $\mathcal A$ denoted $\mathcal A^{\gamma}$
- For t = 1, ..., T do
 - Generate benchmark forecasts $\mathbf{x}_t = (x_t^{\gamma})_{\gamma \in \Gamma}$
 - For $\gamma \in \Gamma$ do
 - \mathcal{A}^{γ} outputs $\hat{y}_t^{\gamma} = \mathbf{u}_t^{\gamma} \cdot \mathbf{x}_t$
 - Collect forecasts $\hat{\mathbf{y}}_t = (\hat{y}_t^{\gamma})_{\gamma \in \Gamma}$ and project them $\tilde{\mathbf{y}}_t = \Pi_{\mathbf{K}} \hat{\mathbf{y}}_t$
 - For $\gamma \in \Gamma$ do
 - \mathcal{A}^{γ} observes y_t^{γ} and computes $\mathbf{u}_{t+1}^{\gamma}$
 - Suffer the prediction error $\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} (y_t^{\gamma} \tilde{y}_t^{\gamma})^2$

Introduction

Experiments

Assessment of the forecasts

To minimize the average prediction error

$$\tilde{L}_T = \frac{1}{|\Gamma|} \sum_{t=1}^T \frac{1}{|\Gamma|} \|\mathbf{y}_t - \tilde{\mathbf{y}}_t\|^2 = \frac{1}{T|\Gamma|} \sum_{t=1}^T \sum_{\gamma \in \Gamma} (y_t^{\gamma} - \tilde{y}_t^{\gamma})^2$$

with *C* the set of matrices **U** such that the predictions $\mathbf{U}^T \mathbf{x}_t$ satisfy the hierarchical constraints and $C_{|D}$ the set such that the matrices also have all their rows in *D*:

$$C_{|D} = \{ \mathbf{U} \mid \forall \mathbf{x} \in \mathbb{R}^{|\Gamma|}, \mathbf{K}\mathbf{U}^{\mathrm{T}}\mathbf{x} = \mathbf{0} \text{ and } \forall \gamma \in \Gamma , \mathbf{u}^{\gamma} \in D \}$$

Introduction

Methodology

Theoretical Result

Practical Example

Experiments

Theorem

If, for any *D* such that, for any $\gamma \in \Gamma$, for T > 0, for any $\mathbf{x}_1, \dots, \mathbf{x}_T$ and $y_1^{\gamma}, \dots, y_T^{\gamma}$, Algorithm \mathcal{A}^{γ} provides a regret bound of the following form

$$\sum_{t=1}^{T} (y_t^{\gamma} - \hat{y}_t^{\gamma})^2 - \min_{\mathbf{u}^{\gamma} \in D} \sum_{t=1}^{T} (y_t^{\gamma} - \mathbf{u}^{\gamma} \cdot \mathbf{x}_t)^2 \le B$$

then,

$$R_T(D) = \sum_{t=1}^T \|\mathbf{y}_t - \widetilde{\mathbf{y}}_t\|^2 - \min_{\mathbf{U} \in \mathcal{C}_{|D}} \sum_{t=1}^T \|\mathbf{y}_t - \mathbf{U}^T \mathbf{x}_t\|^2 \le |\Gamma|B$$

Introduction

Methodology

Theoretical Result

Practical Example

Experiments

Sketch of the proof

 $\bullet \leq |\Gamma| B$

Regret bound of the aggregation algorithm

Introduction

Theoretical Result

Practical Example

Experiments

Example of an aggregation algorithm: ML-Poly

Polynomially weighted average forecaster with multiple learning rates with gradient trick (Gaillard, 2015) competes against the best convex combination of benchmark forecast

D =simplex of dimension $|\Gamma|$

Under boundedness assumptions on observations y_t^{γ} and benchmark forecasts x_t^{γ} , the regret satisfies $R_T \leq O(|\Gamma|^{2/3}\sqrt{T \ln T})$

Introduction

Theoretical Result

Practical Example

Experiments

The underlying real data set

Electrical consumption records of 1 545 households over the period from April 20, 2009 to July 31, 2010.

Variable	Description	Range / Value		From Energy	
Date	Current time	From April 20, 2009 to July 31, 2010 (half-hourly)		Demand Research	
Consumption	Power consumption	From 0.001 to 900 kWh	ļ	consumption of	
Region	UK NUTS of level 3	UK- H23, -J33, -L15, -L16, -L21, -M21, or -M27		households at	
Temperature	Air temperature	From $-20 \circ C$ to $30 \circ C$	J	half-hourly steps over two years)	
Visibility	Air visibility	From 0 to 10 (integer)		From NOAA	
Humidity	Air humidity percentage	From 0% to 100%	ſ	and Atmospheric	
Half-hour	Half-hour of the day	From 1 to 48 (integer))	Administration)	
Day	Day of the week	From 1 (Monday) to 7 (Sunday) (integer)		Created	
Position in the year	Linear values	From 0 (Jan 1, 00:00) to 1 (Dec 31, 23:59)		Createu	
Smoothed temperature	Exponential smoothing	From $-20 \circ C$ to $30 \circ C$	J		

Introduction

Methodology

Theoretical Result

Practical Example

Experiments

Behavioral segmentation of the households

Introduction

Methodology

Theoretical Result

Practical Example

e Experiments

Experiment design

- Double segmentation:
 - Geographical, based on region information
 - Behavioral

Introduction

- Meteorological data:
 - One per region
 - Convex combination of local meteorological variables for levels containing several regions
- Benchmark creation: Generalized Additive Models

- Observation and benchmark standardization for Aggregation (ML-Poly)
- Operational constraint: Half-hourly predictions with one-day-delayed observations

			Start date	End date
Behavioral se	egmentation			
Benchmark generation model training		April 20, 2009	April 19, 2010	
Benchmark a	nd observation sta	ndardization		
Initialization of the aggregation		April 20, 2010	April 30, 2010	
Model evalua	tion		May 1, 2010	July 31, 2010
troduction	Methodology	Theoretical Result	Practical Example	Experiments Conclusi

Lonclusior

Results – Mean Squared Error (MSE) on test period

	All aggregated levels	Global	Local
Benchmark	455.5	205.8	66.3
Projection	450.7	200.8	66.3
Aggregation	397.9	172.0	61.2
Aggregation + Projection	396.0	170.3	61.1

Clustering	Benchmark	Bottom-up	Projection	Aggregation	Aggregation + Projection
Region	205.8	189.9	201.3	187.8	186.7
Behavior	-	208.4	205.2	179.3	179.3
Region + Behavior	-	201.0	200.8	172.0	170.3

Introduction

Methodology

Theoretical Result

Practical Example

Experiments

Results – Mean Squared Error (MSE) on test period

Original boxplots

Boxplots trimmed at 220 kWh²

Distribution over the test period of the daily mean squared error of global consumption for the four strategies "Benchmark", "Projection", "Aggregation", and "Aggregation + Projection"

Introduction

Theoretical Result

Practical Example

Conclusion Experiments

Conclusion

A three-step approach to forecasting electricity consumption time series at different levels of household aggregation and linked by hierarchical constraints with

- Theoretical result
- Experimental results which suggest that
 - Aggregation and projection improve the forecasts overall (confirming the theoretical result)
 - And forecasts of both global and local consumption
 - Global consumption forecasts improve when using forecasts of groups of households segmented according to their region (with their own weather conditions) and according to their behavior

Thank you for your attention! Questions?