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PSL Research University, Paris, France.
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Abstract

This paper proposes a three-step approach to forecasting time series of electricity consumption

at different levels of household aggregation. These series are linked by hierarchical constraints -

global consumption is the sum of regional consumption, for example. First, benchmark forecasts are

generated for all series using generalized additive models; second, for each series, the aggregation

algorithm ‘polynomially weighted average forecaster with multiple learning rates’, introduced by

Gaillard, Stoltz and van Erven in 2014, finds an optimal linear combination of the benchmarks;

finally, the forecasts are projected onto a coherent subspace to ensure that the final forecasts satisfy

the hierarchical constraints. By minimizing a regret criterion, we show that the aggregation and

projection steps improve the root mean square error of the forecasts. Our approach is tested on

household electricity consumption data; experimental results suggest that successive aggregation

and projection steps improve the benchmark forecasts at different levels of household aggregation.

Keywords: Adjusting forecasts, Combining forecasts, Demand forecasting, Electricity, Time

series

1. Introduction

Motivation: Electricity Forecasting. New opportunities come with the recent deployment of smart

grids and the installation of meters: they record consumption quasi instantaneously in households.

From these records, time series of demand are obtained at various levels of aggregation, such as

consumption profiles and regions. For privacy reasons, household records may not be used directly.

Moreover, consumption at individual level is erratic and difficult to predict. This is why we focus on

household aggregations. For demand management, it is useful to predict the global consumption.

Furthermore, to dispatch correctly the electricity into the grid, forecasting demand at a regional

level is also an important goal. Finally, a good estimation of the consumption of some groups of
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consumers (with the same profile) could be helpful for the electricity provider which may adapt

its offer to perform effective demand side management. Thus, forecasts at various aggregated lev-

els (entire population, geographical areas, groups of same consumption profiles) are useful for an

efficient management of consumption. In this work, we first build at each aggregation level, and

independently, benchmark forecasts using generalized additive models. Noticing that these time

series may be correlated (the consumption of a given region may be close to the one of a neighbor-

ing region) and connected to each other through summation constraints (the global consumption

is the sum of the region consumptions, e.g.), the problem considered falls under the umbrella of hi-

erarchical time series forecasting (see, among others Hyndman, Ahmed, Athanasopoulos & Shang,

2011). Using these hierarchical relationships may improve the benchmark forecasts that were gen-

erated. Our approach consists in combining two methods: benchmark aggregation and projection

in a constrained space. Our aim is to improve forecasts both at the global and at the local levels.

Literature Discussion for Hierarchical Forecasting. Traditionally two types of methods have been

used for hierarchical forecasting: bottom-up and top-down approaches. In the bottom-up ap-

proaches (see Dunn, Williams & DeChaine, 1976) forecasts are constructed for lower-level quantities

and are then summed up to obtain forecasts at the upper levels. In contrast, top-down approaches

(see Gross & Sohl, 1990) work by forecasting aggregated quantities and then by determining dis-

aggregate proportions to compute lower level predictions. Shlifer & Wolff (1979) compare these

two families of methods and conclude that bottom-up approaches work better. Recently, it has

indeed proven successful for load forecasting to improve the global consumption prediction error

(see among others Auder, Cugliari, Goude & Poggi, 2018). Other approaches (neither bottom-up

nor top-down) were recently introduced, for example Wickramasuriya, Athanasopoulos & Hynd-

man (2019) forecast all nodes in the hierarchy and reconcile (i.e. impose the respect of hierarchical

constraints) them by projection. Their general MinT (for Minimum Trace) approach attempts to

capture some cross-sectional information between times series via the covariance matrix of the er-

rors of the base forecasts. It includes both oblique and orthogonal projections (this is discussed from

a geometric perspective in Panagiotelis, Athanasopoulos, Gamakumara & Hyndman, 2020). More-

over, Van Erven & Cugliari (2015) introduce a game-theoretically optimal reconciliation method

to improve a given set of forecasts. Firstly, one comes up with some forecasts for the time series

without worrying about hierarchical constraints and then a reconciliation procedure is used to
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make the forecasts aggregate consistent. This generalizes the previous orthogonal projection to

other possible projections in the constrained space (which ensures that the forecasts satisfy the

hierarchy). Most work on hierarchical forecasting concentrates on the mean, but some recent work

has addressed probabilistic forecasting including that of Ben Taieb, Taylor & Hyndman (2017),

Ben Taieb, Taylor & Hyndman (2020) and Panagiotelis et al. (2020).

Literature Discussion for Aggregation Methods. Aggregation methods (also called ensemble meth-

ods) for individual sequences forecasting originate from theoretical works by Vovk (1990), Cover

(1991) and Littlestone & Warmuth (1994); their distinguishing feature with respect to classical

ensemble methods is that they do not rely on any stochastic modeling of the observations and

thus, are able to combine forecasts independently of their generating process. They have been

proved to be very effective to predict time series (see for instance Mallet, Stoltz & Mauricette,

2009 and Devaine, Gaillard, Goude & Stoltz, 2013) and those methods were used to win forecast-

ing competitions (see Gaillard, Goude & Nedellec, 2016). This aggregation approach has recently

been extended to the hierarchical setting by Goehry, Goude, Massart & Poggi (2020); they used a

bottom-up forecasting approach which consists in aggregating the consumption forecasts of small

customers clusters.

In this article we combine the reconciliation approach based on orthogonal projection with some

aggregation algorithm to propose a three stage meta-algorithm which is as follows:

1. Generate base forecasts for all times series in the hierarchy,

2. Apply, for each series, the aggregation algorithm ’ that finds an optimal linear combination

of the base forecasts

3. Project the combination forecasts onto a coherent subspace to ensure the final forecasts

satisfy the hierarchical constraints.

The second step here provides the innovation (Steps 1 and 3 on their own are equivalent to the

Ordinary Least Squares version of the MinT algorithm – see Wickramasuriya et al., 2019). By in-

cluding an aggregation algorithm between these steps, much more of the cross-sectional information

is able to be captured, thus improving the forecasts. A theoretical result is provided for the regret

bound of the meta-algorithm which ensures that aggregation and projection steps improve the root

mean square error of the forecasts. We then illustrate the proposed methods using smart meter

data collected in Great Britain by multiple energy providers (see Schellong, 2011 and AECOM,

3



2018). ‘Energy Demand Research Project ’ data gathers multiple households power consumption

data. We consider two population segmentations: a spatial segmentation based on the location of

the households and a behavioral one based on household consumption profiles. For all aggregation

levels, we generate benchmark forecasts using generalized additive models (see Wood, 2006) and use

the polynomially weighted average forecaster with multiple learning rates (ML-Pol, see Gaillard,

Stoltz & van Erven, 2014 and Gaillard, 2015) aggregation algorithm to combine these predictions.

We evaluate the performance of four types of predictions: benchmarks, aggregated benchmarks,

projected benchmarks and finally aggregated and projected benchmarks. Results show that the

propose approach improve the root mean square error of the forecasts at the different levels of

household aggregation.

Notation. Without further indications, ‖x‖ denotes the Euclidean norm of a vector x. For the

other norms, there will be a subscript: e.g., the L1-norm and the infinity norm of x are denoted by

‖x‖1 and ‖x‖∞, respectively. Moreover, vectors will be in bold type and unless stated otherwise,

they are column vectors, while matrices will be in bold underlined. We denote the inner product

of two vectors x and y of the same size by x · y = xTy. Finally, the cardinality of a finite set D is

denoted by |D|.

2. Methodology

With Γ, a set of aggregation levels (entire population, regions, behavioral clusters of households,

e.g.), we consider the set of time series
{

(yγt )t>0 , γ ∈ Γ
}

connected to each other by some summation

constraints: a few of them are equal to the sum of several others. To forecast these time series, a

set of benchmark forecasts is generated. At any time step t, we want to forecast the vector of the

values of the |Γ| times series at t, denoted by yt
def
= (yγt )γ∈Γ. For each node γ and each time step

t, we will provide point forecasts ỹγt of yγt and will focus on squared error losses (yγt − ỹγt ). We

propose a method to obtain relevant forecasts from these benchmark forecasts.

2.1. Modeling of the Hierarchical Relationships

The relationships between the time series induce a hierarchy which should be exploited to

improve forecasts. These summation constraints may be represented by one or more trees, the

value at each node being equal to the sum of the ones at its leaves. Γ denotes the set of aggregation
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levels which is also the set of the tree’s nodes. There are as many summation constraints as there

are nodes with leaves. Subsequently, we will introduce a matrix K to encode these relationships.

Each line of K is related to one of the summation constraints with −1 at the associated node and

1 at its leaves. Thus, for any time step t, the vector of the values of the |Γ| times series at t,

denoted by yt, is in the kernel of K (i.e. in the set of vectors y such as yK = 0n, where 0n is a

vector of n zeros and n is the number of hierarchical constraints). Example 1 below treats a single

summation constraint and Example 2 presents more complex relationships between the time series

by considering two different partitions of the same time series. In our experiments, the underlying

hierarchies will be of these two forms.

Example 1: Two-level Hierarchy. The simplest approach consists in considering a

single equation connecting the time series. Here, ytot stands for the one which is the sum of the

N others which are denoted by y1, . . . , yN (for example, the power consumption of a population of

households which are distributed in N regions) The underlying hierarchy is represented in Figure 1

by a tree with a single root directly connected to N leaves. For any time step t, the time series

satisfy ytot
t = y1

t + y2
t + · · · + yNt and the vector yt =

(
ytot
t , y1

t , . . . , y
N
t

)T
respects the hierarchy if

and only if Kyt = 0 with K =
(
− 1, 1, 1, . . . , 1

)
.

ytot

y1 y2 . . . yN

Figure 1: Representation of a two-level hierarchy.

Example 2: Two Crossed Hierarchies. Considering two partitions, the time series can

ytot

y1 ·

y1,1 y1,2 . . . y1,N2

y2,·

y2,1 y2,2 . . . y2,N2

. . . yN1,·

yN1,1 yN1,2 . . . yN1,N2

= ytot

y · 1

y1,1 y2,1 . . . yN1,1

y ·,2

y1,2 y2,2 . . . yN1,2

. . . y ·,N2

y1,N2 y2,N2 . . . yN1,N2

Figure 2: Representation of two crossed hierarchies.
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be represented with two three-level trees sharing the same root and leaves. Only the intermediate

levels differs according to which partition is firstly taking into account. The leaves of the trees

form a N1×N2-matrix
(
yi,j
)

16i6N1, 16j6N2
. An intermediate node of the first tree yi,· is the sum of

the line i while a node y·j of the second tree is the sum of the column j. Whether we sum rows or

columns first, the sum of all coefficients is ytot
t . One partition may refer to a geographic distribution

of the households while the other classifies them according to their consumption behaviors. The first

tree breaks down consumption firstly by the N1 regions and then by the N2 household profiles. The

second one divides the households according to their habits before splitting them geographically.

Both trees are represented in Figure 2. For any time step t, the time series satisfy the 2 +N1 +N2

equations

ytot
t = y1,·

t + y2,·
t + · · ·+ yN1,·

t (1)

yi,·t = yi,1t + yi,2t + · · ·+ yi,N2
t , ∀ i = 1, . . . , N1 (2i)

ytot
t = y·,1t + y·,2t + · · ·+ y·,N2

t (3)

y·,jt = y1,j
t + y2,j

t + · · ·+ yN1,j
t , ∀ j = 1, . . . , N2. (4j)

Equations (1) and (3) refer to the first level of the trees while the N1 +N2 Equations (2i) and (4j)

refer to second levels. At a time step t, by ordering the time series in the vector as

yt = (ytot
t , y1,·

t , . . . , y
N1,·
t , y·,1t , . . . , y

·,N1
t , y1,1

t , y1,2
t , . . . , yN1,N2

t ),

it may be seen that they respect the hierarchy if and only if Kyt = 02+N1+N2 with

K =





-1

N1︷ ︸︸ ︷
1 · · · 1 ← (1)

-1

N2︷ ︸︸ ︷
1 · · · 1

. . .
. . . ← (2i)

-1

N2︷ ︸︸ ︷
1 · · · 1

-1

N2︷ ︸︸ ︷
1 · · · 1 ← (3)

-1 1 1

. . .
. . . · · · . . . ← (4j)

-1 1 1

.
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2.2. A Three-step Forecast

For each node γ and time step t, we first, thanks to an historical data set of the time series and

to some exogenous variables proper to the node γ, a forecaster makes the prediction xγt . We propose

to use the knowledge of all of these |Γ| benchmark forecasts and of the summation constraints to

improve the predictions. For each node γ and time step t, we then form our prediction ŷγt by

linearly combining the components of the base forecasts (xit)i∈Γ thanks to a so-called aggregation

algorithm (a copy Aγ of an aggregation algorithm A is run separately for each node γ). That is,

we use all |Γ| benchmark forecasts to predict yγt , not only xγt . Finally, a reconciliation step will

update the forecast vector so that it is in the kernel K. Let us denote by ỹγt the final forecasts.

We are now going to detail each step of the procedure schematized below.

Generation

of benchmark

forecasts

Forecasters

|Γ| aggregations

in parallel

A

Projection

K

historical data

exogeneous variables

(xγt )γ∈Γ (ŷγt )γ∈Γ (ỹγt )γ∈Γ

First Step: Generation of benchmark forecasts. For each node γ ∈ Γ, at each time step t, thanks to

an historical data set of the time series (yγs )16s6t−1 and to some exogenous variables proper to γ, a

forecaster makes the prediction xγt . The forecasting method we use in the experiments is based on

generalized additive models. These |Γ| benchmark forecasts collected into a vector xt =
(
xγt
)
γ∈Γ

.

The benchmark vector xt is used in the aggregation step that comes next to predict again each

time series. We focus here on |Γ| benchmark forecasts – one for each of the nodes; however, we

could also have considered several predictions per nodes.

Second Step: Aggregation. The above benchmark forecasts are generated independently with dif-

ferent exogenous variables and possibly different methods. Yet, the observations
(
yγt
)
γ∈Γ

may

be correlated. For example, considering load forecasting, the consumptions associated with two

nearby regions can be strongly similar. Furthermore, the observations are related though the sum-

mation constraints (although we disregard these equations here). This is why linearly combining

the benchmark forecasts may refine some forecasts – this is exactly what this step does. Formally,

an aggregation algorithm outputs at each round a vector of weights ûγt and returns the forecast

ŷγt
def
= ûγt · xt. It does so based on the information available, that is, a feature vector xt made of

benchmark forecasts in our case and past data. We consider an aggregation algorithm A and form
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a copy Aγ for each node γ, which we feed with an input parameter vector sγ0 . These predictions

are then gathered into the vector ŷt = (yγt )γ∈Γ.

Instead of this approach based on benchmark forecasting and aggregation node by node, we

could have considered a meta-model to directly predict the time series vector
(
yγt
)
γ∈Γ

at each time

step t (with a common forecaster and therefore without any aggregation step). Once this global

forecast would have been obtained, we would have gone straight to the projection stage. In such

a model, the number of variables to be taken into account (the historical data of the time series

but also the exogenous variables specific to each node) would have been considerable and getting

relevant forecasts would have not been an easy task. But actually, a practical choice motivated

our method for the most. Indeed, the forecasters may be black boxes proper to each node and the

exogenous variables of a node γ may be unknown at a node γ′. In our experiments, we followed this

three-step approach; however, our method totally operates if, for each node γ and at each time step

t, an external expert provides the forecast xγt . How these benchmark forecasts have been obtained

is no longer an issue and the aim is to improve these benchmark forecasts with aggregation and

projection steps. Thus, at each time step t, only the benchmark forecasts are revealed at time t

and by skipping the generation of benchmark step, we go straight to the aggregation step.

Third Step: Projection. As the |Γ| executions of Algorithm A are run in parallel and independently,

the obtained forecast vector ŷt does not necessarily respect hierarchical constraints. To correct that,

we consider the orthogonal projection of ŷt onto the kernel of K, which we denote by ΠK(ŷt). As

the orthogonal projection matrix onto K is given by KT(KKT)
-1
K, the projection onto the kernel

of K is ΠK =
(
I|Γ| −KT(KKT)

-1
K
)
. The updated forecast ỹt

def
= ΠK(ŷt) fulfills the hierarchical

constraints.

To sum up, at each time step t, we first generate benchmark forecasts xt. These predictions

are then aggregated to form a new vector of forecast ŷt, which is itself updated in the projection

step in ỹt. This procedure is stated in Meta-algorithm 1. Moreover, we can also directly project

the benchmark forecasts, skipping the aggregation step; this leads to the forecasts ΠK(xt) – they

are identical to the OLS version of the MinT algorithm proposed in Wickramasuriya et al. (2019).

Thus, we get four forecasts (xt, ΠK(xt), ŷt and ỹt) for each node and each time step. The

performance of our strategies is measured in mean squared error. In the experiments (Section 5),

we compare these four methods in the scope of power consumption forecasting.
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Meta-algorithm 1 Generation, aggregation and projection for hierarchical forecasting

Input

Set of nodes Γ and constraint matrix K

Benchmark forecast generation method

Aggregation algorithm A taking parameter vector s0

Compute the orthogonal projection matrix ΠK =
(
I|Γ| −KT(KKT)

-1
K
)

for γ ∈ Γ do

Create a copy of A denoted by Aγ and run with sγ0

for t = 1, . . . , T do

Generate benchmark forecasts xt

for γ ∈ Γ do

Aγ outputs ŷγt = uγt · xt

Collect forecasts: ŷt = (ŷγt )T
γ∈Γ

Project forecasts: ỹt = ΠK(ŷt)

for γ ∈ Γ do

Aγ observes yγt

Suffer a prediction error 1
|Γ|
∑

γ∈Γ

(
yγt − ỹ

γ
t

)2
aim

Minimize the average prediction error L̃T =
1

T

T∑
t=1

1

|Γ|
∥∥yt − ỹt

∥∥2
=

1

T |Γ|

T∑
t=1

∑
γ∈Γ

(
yγt − ỹ

γ
t

)2
.

2.3. Assessment of the Forecasts – Form of the Theoretical Guaranties Achieved

Our final forecasts are linear combinations of the benchmark forecasts and, after T > 1 time

steps, they are evaluated by the average prediction error

L̃T
def
=

1

T

T∑
t=1

1

|Γ|
∑
γ∈Γ

(
yγt − ỹ

γ
t

)2
. (1)

We want to compare our method to constant linear combinations of benchmark forecasts; namely,

to the strategies defined by constant combination vectors (uγ)γ∈Γ which provide, for any node γ and

any time step t, the forecasts uγ · xt. For example, recalling that, for γ ∈ Γ, xγt is the benchmark

prediction of yγt , using the standard basis vector that points in the γ direction δγ
def
= 1{i=γ} as

weights should be a good first choice to define a constant linear combination. Indeed, this strategy
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provides, for any γ ∈ Γ, δγ ·xt = xγt as forecast for yγt . Thus, the matrix
(
δγ
)
γ∈Γ

defines a constant

benchmark strategy and its cumulative prediction error, after T > 1 time steps, is

LT

((
δγ
)
γ∈Γ

)
def
=

1

T

T∑
t=1

1

|Γ|
∑
γ∈Γ

(
yγt − x

γ
t

)2
. (2)

As soon as the benchmark forecasts (xγt )γ∈Γ are well-chosen, this quantity is small. But, these

benchmark predictions do not satisfy the summation constraints a priori and it will not be fair

to compare our forecasts (which do respect to hierarchy – projection step ensures it) to these

benchmark forecasts – or any other constant linear combinations of benchmarks. Thus, we are

going to introduce the set C which contains all the constant strategies which satisfy the hierarchical

constraints and detail how such a strategy can be represented by a |Γ| × |Γ|-matrix U ∈ C. Then,

we will decompose, for any U ∈ C, the average prediction error into an approximation error LT (U)

and a sequential estimation error ET (U). To ensure that our strategy does almost as well as the

best constant combination of benchmark forecasts, we want to get a guarantee on the average

prediction error L̃T , defined in Equation (1), of form:

L̃T 6 inf
U∈C

{
LT (U) + ET (U)

}
, where ET (U) = O

( 1√
T

)
. (3)

Indeed, if ET (U) −→
T→+∞

0, the average prediction error of our strategy tends to LT (U) and classical

convergence rate are in 1√
T

. We will explain how this aim is equivalent to minimizing a quantity

called regret.Such a result ensures that our strategy outperforms all U ∈ C strategies, therefore

the set C is called “class of comparison”. In this work, it refers to the set of constant strategies

that satisfy hierarchical constraints and is defined just below.

2.3.1. Class of Comparison

In what follows, the kernel and the image of a matrix A ∈ Rn×m are denoted by Ker(A)
def
={

u ∈ Rm |Au = 0n
}

(with 0n a vector of n zeros) and Im(A)
def
=
{
Au |u ∈ Rm

}
, respectively.

We consider here a constant strategy, namely |Γ| linear combinations of the benchmark forecasts.

More formally, let us denote by uγ a constant weight vector which provides, for any time step t,

the forecast uγ · xt for the time series yγt . By batching these |Γ| vectors into U
def
= (uγ)γ∈Γ ∈M|Γ|,

predictions satisfy the constraints for a time step t if UTxt ∈ Ker(K). For it to be true for any

t (except for a few special cases, such as if all benchmark vectors are null), this requires that the
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image of UT is in the kernel of K. We introduce the following set of matrices, for which associated

forecasts necessarily satisfy the hierarchical constraints

C def
=
{

U =
(
u1
∣∣ . . . ∣∣u|Γ|) ∣∣ Im(UT

)
⊂ Ker

(
K
)}
. (4)

Note that, for any matrix U ∈ M|Γ|, by definition of the orthogonal projection ΠK, the forecast

vector ΠKUTxt satisfies the hierarchical relationships so the set C contains the matrix UΠT
K. This

implies that the set C is not empty. To compare our methods to any constant strategy U ∈ C, we

now introduce the common notion of regret.

2.3.2. Aim: Regret Minimization

We want to compare the average prediction error L̃T to LT (U), where U ∈ C so the forecasts

associated with U satisfy the hierarchical constraints – otherwise, the two strategies would not be

comparable because our predictions do respect the hierarchy. Good algorithms should ensure that

L̃T is not too far from the best LT (U). We thus define, for any U = (uγ)γ∈Γ ∈ C, the cumulative

prediction error of the associated constant linear combinations of benchmarks by

LT (U)
def
=

1

T

T∑
t=1

1

|Γ|
∑
γ∈Γ

(
yγt − uγ · xt

)2
=

1

T |Γ|

T∑
t=1

∥∥yt −UTxt
∥∥2
. (5)

In order to obtain a theoretical guarantee of the form of Equation (3), we decompose the average

prediction error as

L̃T = LT (U) +
RT (U)

T |Γ|
, (6)

so, the aim for algorithms to get L̃T as close as possible to minU∈C LT (U) (with C the class of

comparison defined above), is equivalent to

max
U∈C

RT (U) = T |Γ| ×
(
L̃T −min

U∈C
LT (U)

)
(7)

being small. The quantity RT (U), commonly called regret is defined as the difference between the

cumulative prediction error of our method and the one for weights U:

RT (U)
def
= T |Γ| ×

(
L̃T − LT (U)

)
=

T∑
t=1

∥∥yt − ỹt
∥∥2 −

T∑
t=1

∥∥yt −UTxt
∥∥2
. (8)

In the light of Equation (6), the average prediction error L̃T we attempt to minimize breaks

down into an approximation error LT (U) (the best prediction error we can hope for) and a se-

quential estimation error (dependent on how quickly the model estimates U), proportional to the

regret RT (U).
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The introduction of a regret criteria is very common for online forecasting methods (see,

among others, Devaine et al., 2013 and Mallet et al., 2009), and for an algorithm to be useful,

maxU∈C RT (U) need to be sub-linear in T (otherwise the error remains constant – or even worse:

it increases with time). Typical theoretical guaranties provide bounds of order
√
T (see for exam-

ple, Deswarte, Gervais, Stoltz & Da Veiga, 2018 and Amat, Michalski & Stoltz, 2018).

3. Main Theoretical Result

From now on, let us introduce the following notation concerning the regret bound of Algo-

rithm A.

Assumption 1. We assume that, for any set D ∈ R|Γ|, for any γ ∈ Γ with the initialization

parameter vector sγ0 , for T > 0, any x1:T = x1, . . .xT and any yγ1:T = yγ1 , . . . , y
γ
T , Algorithm Aγ

provides a regret bound of the following form:

RγT (D)
def
=

T∑
t=1

(
yγt − ŷ

γ
t

)2 − min
uγ∈D

T∑
t=1

(
yγt − uγ · xt

)2
6 B

(
xγ1:T , y

γ
1:T , s

γ
0

)
. (9)

As getting a linear bound is trivial (by using the common assumption that prediction errors are

bounded), the bounds B(. . . ) have to be sub-linear to be of interest. We will see that the algorithm

we used in the experiments ensures such a regret bound. This assumption makes it possible to

establish a bound of the cumulative regret.

Theorem 1. For any sets D ∈ R|Γ| and B ⊂M|Γ|, by denoting, B|D
def
=
{
U ∈ B | ∀γ ∈ Γ, uγ ∈ D

}
,

under Assumption 1, for any T > 1, the cumulative regret satisfies

RT (D)
def
= max

U∈C|D
RT (U) =

T∑
t=1

∥∥yt − ỹt
∥∥2 − min

U∈C|D

T∑
t=1

∥∥yt −UTx
∥∥2

6
∑
γ∈Γ

B
(
xγ1:T , y

γ
1:T , s

γ
0

)
. (10)

The regret RT (D) is not just the sum over all the nodes of the regrets RγT (D) of Equation (9).

Indeed, we do not evaluate the forecasts ŷt here but those obtained after the projection step: ỹt.

The projection step provides a diminishing of the square prediction error and we just have to sum

Equation (9) on all nodes to get the bound.
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Proof. This regret bound results from two main arguments: Pythagorean theorem, on the one

hand, and Assumption 1, on the other hand. For any t > 1, as yt ∈ Ker(K), the Pythagorean

theorem ensures ∥∥yt − ỹt
∥∥2

=
∥∥yt −ΠK(ŷt)

∥∥2
6
∥∥yt − ŷt

∥∥2
. (11)

Let us fix a matrix U =
(
u1| . . . |u|Γ|

)
∈ C|D. Firstly, the application of Pythagorean theorem

ensures that the projection step reduces regret. Rewriting the regret as a sum over the nodes, we

then use Assumption 1 independently for each node of Γ to conclude the proof.

T∑
t=1

∥∥yt − ỹt
∥∥2 −

T∑
t=1

∥∥yt −UTxt
∥∥2

(11)
6

T∑
t=1

∥∥yt − ŷt
∥∥2 −

T∑
t=1

∥∥yt −UTxt
∥∥2

=
∑
γ∈Γ

T∑
t=1

(
yγt − ŷ

γ
t

)2 −∑
γ∈Γ

T∑
t=1

(
yγt − uγ · xt

)2

6
∑
γ∈Γ

max
uγ∈D

( T∑
t=1

(
yγt − ŷ

γ
t

)2 − T∑
t=1

(
yγt − uγ · xt

)2
)

=
∑
γ∈Γ

RγT (D)

(9)
6
∑
γ∈Γ

B
(
x1:T , y

γ
1:T , s

γ
0

)
. (12)

As this bound is satisfied for all U =
(
u1| . . . |u|Γ|

)
∈ C|D, we conclude the proof by taking the

minimum onto C|D.

Note that similar results, also based on Pythagorean theorem, have been obtained in Pana-

giotelis et al. (2020) (see Theorem 3.1).

4. An example of an Aggregation Algorithm: Polynomially Weighted Average Fore-

caster with Multiple Learning rates (ML-Pol)

At a time step t, for a node γ ∈ Γ, a copy Aγ of an aggregation algorithm A takes the bench-

mark vector xt, which contains the predictions of all the nodes (including that of the considering

node), as an input and outputs a weight vector uγt and thus the forecast yγt with uγt · xt. We

remind that the benchmark forecasts
(
xγt
)
γ∈Γ

are generated independently with possibly different

exogenous variables but that the observations
(
yγt
)
γ∈Γ

may be strongly correlated. This is why we
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consider aggregation to refine some forecasts by combining the benchmarks. Our experiments will

demonstrate that this aggregation step improves the forecasts.

Benchmark forecasts and observation are firstly standardized according to a pre-processing fully

described in Appendix A. The way in which this normalization modifies the theoretical results is

also explained in the appendix. For the ease of notation, transformed benchmarks and observations

will still be denoted by xt and yt, respectively.

The algorithm comes with some theoretical guarantees of the form of Assumption 1 and we

adapt Theorem 1 by replacing the bound B(. . . ) with the one provided by the theory. The latter

was established under some boundedness assumptions on benchmark forecasts and observations,

so we make the following assumption.

Assumption 2. Boundedness assumptions. For any t > 0 and any γ ∈ Γ we assume that there

is a constant C > 0 such that

|yγt | 6 C and |xγt | 6 C. (13)

Here, the constant is common to all the nodes, which makes practically sense because of the

pre-processing described in Appendix A.

The algorithm we consider was initially designed to compete against the best benchmark fore-

cast. Namely, for a node γ ∈ Γ, polynomially weighted average forecaster with multiple learn-

ing rates (ML-Pol, see Gaillard et al., 2014 and Gaillard, 2015) provides some bound on the

difference between the cumulative prediction error LγT
def
=
∑T

t=1

(
yγt − ŷγt

)2
of the strategy and

mini∈Γ
∑T

t=1

(
yγt − xit

)2
. At each time step t, the strategy computes weight vector uγt =

(
uγ,it
)
i∈Γ

based on historical data. These vectors are in the |Γ|-simplex, which we denote by ∆|Γ|. For each

benchmark forecast i ∈ Γ, the weight uγ,it is a polynomial function of the cumulative prediction

error of xit. However, by using gradients of prediction errors instead of the original prediction

errors, the average error of this algorithm may come close to minuγ∈∆|Γ|
1
T

∑T
t=1

(
yγt − uγ · xt

)2
.

This “gradient trick” (see Cesa-Bianchi & Lugosi, 2006, Section 2.5) is already integrated in the

statement of the algorithm provided in Appendix B.1.

The computed weight vectors are in ∆|Γ|. As we do not necessarily want to impose such a

restriction, we use another trick, introduced by Kivinen & Warmuth (1997) and presented in Ap-

pendix B.2. It extends the class of comparison from the |Γ|-simplex to an L1-ball of radius α

denoted by Bα
def
=

{
uγ ∈ R|Γ|

∣∣ ‖u‖1 =
∑

i∈Γ |uγ,i| 6 α
}

. The aim is then to come close to the
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cumulative error minuγ∈Bα
∑T

t=1

(
yγt − uγ · xt

)2
.

With the same notation as in the previous paragraph, for any node γ ∈ Γ, Theorem 5 of

Gaillard et al. (2014) provides the following regret bound on the ML-Pol algorithm used in the

experiments:

RγT (∆|Γ|) 6 E
√
|Γ|(T + 1)

(
1 + ln(1 + T )

)
. (14)

With E = 4C2 and Theorem 1, we obtain an upper bound on the regret RT (∆|Γ|), which is also of

order
√
T (up to poly-logarithmic terms):

RT (∆|Γ|) 6 4C2|Γ|
√
|Γ|(T + 1)

(
1 + ln(1 + T )

)
= O

(
|Γ|3/2

√
T lnT

)
. (15)

5. Experiments

Our application relies on electricity consumption data of a large number of households to which

we have added meteorological data. The regions of the households are also provided. The full data

set is presented in Subsection 5.1. From these temporal and non-temporal data, we dispatch the

households into two segmentations: the first one is based on the household location information;

the second is behavioral and relies on the method presented in Subsection 5.2. We describe the

experiments and analyze the results in Subsections 5.3 and 5.4.

5.1. The Underlying Real Data Set

The project “Energy Demand Research Project1”, managed by Ofgem on behalf of the UK Gov-

ernment, was launched in late 2007 across Great Britain (see AECOM, 2018 and Schellong, 2011).

Power consumptions of approximately 18,000 households with smart-type meters were collected

at half-hourly intervals for about two years. The Region (the initial data set provides the level-4

NUTS2 codes but we consider larger subdivisions – from 150,000 to 800,000 inhabitants – and

associate each household with its level-3 code) is associated with each household. In a data clean-

ing step, we removed households with more than 5 missing consumption records over the period

April 20, 2009 to July 31, 2010 (around 1, 600 households are thus kept) – the remaining missing

1https://www.ofgem.gov.uk/gas/retail-market/metering/transition-smart-meters/energy-demand-research-

project
2Nomenclature des Unités Territoriales Statistiques (nomenclature of territorial units for statistics)
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consumption data points are imputed by a linear interpolation. The final data set then contains

the electrical consumption records of the 1,545 remaining households over the period from April

20, 2009 to July 31, 2010 – Ben Taieb et al. (2017), who used the same data, performed similiar

pre-processing in their experiments. From now on, we will denote by I the set of households and

by (yi,t)1−T06t6T the time series of the half-hourly power consumption of the i ∈ I household.

Finally, we added the temperature, visibility and humidity for each region from the NOAA3 data:

we selected a weather station (with records available over the considered period) in each region

and linearly interpolated the meteorological data to get 48 measurements per day (compared to 8

initially). Considering an exponential smoothed temperature, that models the thermal inertia of

buildings, is likely to improve forecasts (see among others, Taylor, 2003 and Goude, Nedellec &

Kong, 2014), so we create the a-exponential smoothing of the temperature τ̄γt
def
= aτ̄γt−1 + (1− a)τγt ,

where a ∈ [0, 1] – after testing several values and evaluating their performance to predict consump-

tion on a training set, we set a = 0.999. For a time step t, we also introduce calendar variables:

the day of the week dt (equal to 1 for Monday, 2 for Tuesday, etc.), the half-hour of the day

ht ∈ {1, ..., 48} and the position in the year ρt ∈ [0, 1], which takes linear values between ρt = 0

on January 1st at 00:00 and ρt = 1 on December the 31st at 23:59. Table 1 sums up the available

variables of our data set and gives their range.

5.2. Behavioral Segmentation of the Households

This section briefly presents the clustering approach we used to segment the households ac-

cording to their consumption behavior.

The method relies on an historical individual time series of household power consumption

(April 20, 2009 to April 20, 2010). We propose a method to extract from these time series a

low number – denoted by r – of combined household characteristics and to use them to build

relevant segmentation. More precisely, the |I| historical times series
(
yi,t
)

1−T06t60
are firstly re-

scaled and gathered into a matrix Y0 ∈ M|I|×T0
. We then reduce the dimension of data with

a non-negative matrix factorization (NMF): we approximate Y0 by Ŵ Ĥ, where Ŵ and Ĥ are

|I| × r and r × T0-non-negative matrices, respectively. As soon as this approximation is good

enough, line i of the matrix Ŵ is sufficient to reconstruct the historical time series of household

i (with the knowledge of matrix Ĥ - which is not used for the segmentation). Thus, we assign,

to each household, r characteristics: the lines of Ŵ. After a re-scaling step – to give the same

3National Oceanic and Atmospheric Administration, https://www.noaa.gov/
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Variable Description Range / Value

Region UK NUTS of level 3 UK- H23, -J33, -L15, -L16, -L21, -M21, or -M27

Temperature Air temperature From −20◦ to 30◦

Visibility Air visibility From 0 to 10 (integer)

Humidity Air humidity percentage From 0% to 100%

Date Current time From April 20, 2009 to July 31, 2010 (half-hourly)

Consumption Power consumption From 0.001 to 900 kWh

Half-hour Half-hour of the day From 1 to 48 (integer)

Day Day off the week From 1 (Monday) to 7 (Sunday) (integer)

Position in the year Linear values From 0 (Jan 1, 00:00) to 1 (Dec 31, 23:59)

Smoothed temperature Smoothed air temperature From −20◦ to 30◦

Table 1: Summary of the variables provided and created for each household of the data set.

importance to each of those characteristics – we get the r-vectors (wi)i∈I . With this low-dimension

representation of households in Rr, we use the k-means clustering algorithm in Rr to provide the

k clusters C1, . . . , Ck. These four steps are summed up in the following scheme and fully detailed

in Appendix C.1.

Re-scaling and

gathering time

series in a matrix

Low rank approx-

imation (NMF):

Y0 ≈ Ŵ Ĥ
Historical time series

{(
yi,t
)

1−T06t60
| i ∈ I

}
Y0 ∈M|I|×T0

Extracting and

re-scaling char-

acteristic vectors

Ŵ ∈M|I|×r
k-means clustering

{
wi ∈ Rr| i ∈ I

}
C1, . . . , Ck

k clusters

5.3. Experiment Design

Thanks to the above method, we established a partition of the household set I. A second

segmentation is suggested by the data: the one which consists in grouping households according to

the “Region” information. Once these two segmentation have been defined, we can consider two

crossed hierarchies (Example 2).

We divide the data set into training data: one-year of historical data (from April 20, 2009 to

April 19, 2010) – used for the behavioral segmentation, benchmark forecast generation method
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training, and standardization – and testing data. As aggregation algorithms start from scratch,

they work poorly during the first rounds. We therefore withdraw the first 10 days of testing data

from the performance evaluation period. So, April 20, 2010 to April 30, 2010 is left for initializing

aggregation algorithms and the hyper-parameters calibration and our methods are then tested

during the last three months (from May 1, 2010 to July 31, 2010). We summarize in Table 2 the

range of dates for each step of the procedure.

Underlying Hierarchies. As detailed in Section 2, we aim to forecast a set of power consumption

time series
{

(yγt )t>0, γ ∈ Γ
}

connected to each other by some summation constraints. These

constraints are represented by one (or more) tree(s) and Γ denotes the set of its (or their) nodes.

We refer to Example 1 if we consider a single segmentation (“Region” or “Behavior”) and to

Example 2 for two crossed segmentations (“Region” and “Behavior”). The partition (A1, . . . AN )

refers to segmentation “Region” and (C1, . . . Ck) to the behavioral one. We recall that we denote

the average power consumption of a group of households γ ⊂ I by yγt
def
=
∑

i∈γ yi,t. Considering

a single segmentation (An)16n6N or (C`)16`6k of I, we want to forecast the consumption of each

cluster Dn or C` , and also the global consumption (namely, the one for γ = I). Thus, we set

Γ = {An}16n6N ∪ {I} or Γ = {C`}16`6k ∪ {I}

and the associated time series respect the hierarchy of Figure 1 – where ytot refers to the time

series associated with I and y1, y2, . . . with the ones of clusters C1, C2, . . . or A1, A2, . . . . If we

now consider both partitions at the same time; we would like to forecast the global consumption

(γ = I), the consumption associated with each region (γ = An, for n = 1, . . . , N) and with each

cluster (γ = C`, for ` = 1, . . . , k) but also the power consumption of cluster C1 in region A1

(γ = C1 ∩ A1), of cluster C1 in region A2 (γ = C1 ∩ A2), and so on. Thus,we consider the set of

nodes

Γ = {C` ∩An}16`6k, 16n6N ∪ {C`}16`6k ∪ {An}16n6N ∪ {I}. (16)

The hierarchy associated with such crossed segmentations is represented in Figure 2 (with N1 = k

and N2 = N) – where the global consumption, associated with I, is denoted by ytot, the one of

cluster C` by y`,·, the one of region An, by y·,n and where y`,n refers to the local consumption of

C` ∩ An. Whatever the hierarchy considered, we aim to forecast the aggregated consumption of

the households for each level γ ∈ Γ, namely the time series
(∑

i∈γ yi,t
)
γ∈Γ

.
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Start date End date

Behavioral Segmentation

Benchmark Generation Model Training

Benchmarks and Observations Standardization

April 20, 2009 April 19, 2010

Initialization of the Aggregation April 20, 2010 April 30, 2010

Model Evaluation May 1, 2010 July 31, 2010

Table 2: Date range for the steps of the proposed method

Meteorological Data of any Set of Households. The method used for benchmark forecast creation

will implicitly assume that meteorological data are available. We recall that we collected meteo-

rological data for each of the N regions. Thus when γ ∈ Γ refers to one of these regions, we can

directly apply the benchmark forecast generation methods. However, if node γ groups households

from different regions, these data are not directly available and one may even wonder what they

should correspond to. We take convex combinations of regional meteorological data, in proportions

corresponding to the locations of the households. More precisely, for each meteorological variable

(temperature, visibility or humidity), we built the meteorological variable of γ as a convex com-

bination of the N meteorological variables of the N regions. The weight associated with region n

corresponds to the proportion of this region in γ, in terms of contribution to the consumption –

this contribution is determined from historical data.

Benchmark Forecast Creation. Generalized additive models (see the monograph of Wood, 2006

for an in-depth presentation) are effective semi-parametric approaches to forecast electricity con-

sumption (see, among others, Goude et al., 2014 and Gaillard et al., 2016) which model the power

demand as a sum of independent exogenous (possibly non-linear) variable effects. In our exper-

iments, for a node γ ∈ Γ, we take into account some local meteorological variables and some

calendar variables and consider a generalized additive model for the power consumption. This

is fully detailed in Appendix C.2. We estimate |Γ| generalized additive models using available

explanatory variables to generate benchmark forecasts xt. Each of them is trained on a year of

historical data (from April 20, 2009 to April 20, 2010). Then, forecasts are computed on the period

April 20, 2010 to July 31, 2010.
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Observations and Benchmarks Standardization. Once the benchmarks are computed, they are stan-

dardized using the protocol presented in Appendix A. We assess the quality of the standardization

for one given configuration, namely “Region + Behavior”, with benchmarks generated by the gen-

eral additive model (this configuration, which refers to the two crossed segmentations “Region”

and “Behavior”) in Appendix C.3.

Calibration of Hyper-Parameters. Once benchmarks and observations are standardized, we run

ML-Pol algorithm on the |Γ| nodes, in parallel with the same hyper-parameter: we need to set α,

the radius of the L1-ball (see Algorithm 2 of Appendix B.2). We optimize its choice by grid search,

which is simply an exhaustive search in a specified finite subset G of the hyper-parameter space.

This optimization is performed sequentially: such online calibration has shown good performance

in power consumption forecasting (see, for example, Devaine et al., 2013).

On an Operational Constraint: Half-Hourly Predictions with One-Day-Delayed Observations. In

this paragraph, we highlight the differences between the theoretical and the experimental settings

and how these changes affect the regret bound. We aim to forecast power consumptions at half-

hourly intervals. Meta-algorithm 1 uses historical time series values y1:t−1 to forecast at a time step

t. We thus assume that very recent past observations, up to half an hour ago, would be available;

and it is not realistic at all. Indeed, there are some operational constraints on the power network

and on meters that make it difficult to get the data immediately: it is common to obtain load

records with a delay of a few hours or even a few days. Although this delay is becoming shorter

with the deployment of smart meters and the evolution of grids, we cannot consider we have access

to the consumption of the previous half-hour. To take into account these operational constraints

and to carry out experiments under practical conditions, we make the classic assumption that we

have access to consumptions with a delay of 24 hours (see among others Fan & Hyndman, 2011

and Gaillard et al., 2016). As now, only past observations y1:t−48 are available at a time step t,

we adapt the previous method a bit.

This delay is especially problematic for online learning (in our experiments, benchmark forecasts

are generated offline with models trained on historical data). Indeed, in the aggregation step of

our method, we assume to observe, for each node γ and at each time step t, the consumption yγt−1

and that is not possible anymore. To deal with this issue we initially considered two solutions. In

our first approach, for any γ ∈ Γ, the time series (yγt ) is divided into 48 time series with daily time
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steps. Then, 48 aggregations are done in parallel and, as t−1 now refers to the previous day, there

is no more delay issue. The 48 series are then collected to reconstruct a time series at half-hour

time step. For any set D ∈ R|Γ|, the regret of the global aggregation RγT (D) is simply the sum

of the 48 regrets – that refer to the 48 aggregation run in parallel on the 48 daily time series –

denoted by
(
Rγ,hT/48(D)

)
16h648

, so we have

RγT (D) =

48∑
h=1

Rγ,hT/48(D) . (17)

If we consider an aggregation algorithm that ensures a bound of the form of Assumption 1 where

the bound B depends only on the horizon time – namely, R 6 B for all h – the regret associated

with the half-hourly time series (yγt ) satisfies:

RγT (D) 6 48×B(T/48) . (18)

Joulani, Gyorgy & Szepesvári (2013) provide an overview of work on online learning under delayed

feedback and for our framework, which refers to full information setting with general feedback.

The bound above matches their results. In a second approach, we “ignore” the delay in a sense

that we apply the aggregation algorithms as if the delayed observations yt−48 were yt.

5.4. Results

In this subsection, we compare the four forecasting strategies detailed below by evaluating

them on the testing period (May 1, 2010 to July 31, 2010) for the three segmentations: “Region”,

“Behavior” and ‘Region + Behavior”. To do so, we introduce some prediction error defined below

as well as a confidence bound on this error. We recall that we aim to forecast, at each time step

t, a vector of time series yt = (yγt )γ∈Γ. The first strategy, that we call “Benchmark”, consists

simply in providing the benchmarksvxt as forecasts. The second one considers only the projection

step and thus skips the aggregation step (we will refer to it as the “Projection” strategy), the

associated forecasts are thus the projected benchmark forecasts ΠK(xt). To measure the impact of

the aggregation step, without projection, we also evaluate the forecasts ŷt (which do not necessarily

satisfy the hierarchical constraints) – this strategy is called “Aggregation”. Finally, the strategy

“Aggregation + Projection” provides the predictions ỹt = ΠK(ŷt). To allow for an evaluation of

the accuracy of the prediction of some time series only, we define the prediction error ET (Λ), for

some subset of nodes Λ ⊂ Γ. In the results below, this subset can be equal to Γ (to evaluate the
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strategies on all the nodes), to the singleton {I} (to focus on the global consumption – namely the

consumption of all the households), or to the set of leaves of the tree associated with the considered

segmentation(s), denoted by Γ0 (to evaluate the performance of local forecasts only). Note that

ET (Γ) will correspond to L̃T × |Γ| for the “Aggregation + Projection” strategy (see Equation 1).

For a node γ ∈ Λ and a time step t, let us denote by εγt the instantaneous squared error. It

corresponds to
(
yγt − x

γ
t

)2
for the “Benchmark” strategy, to

(
yγt −

(
ΠK(xt)

)γ)2
for “Projection”,

to
(
yγt − ŷ

γ
t

)2
for “Aggregation”, and to

(
yγt − ỹ

γ
t

)2
for the “Aggregation + Projection” strategy.

We then consider the average (over time) squared prediction error (which is cumulated over Λ):

ET (Λ)
def
=
∑
γ∈Λ

1

T

T∑
t=1

εγt . (19)

We associate with this error a confidence bound and present our results (see Tables 3 and 4) in the

form:

ET (Λ)± σT (Λ)√
T

, where σT (Λ)2 =
1

T

T∑
t=1

∑
γ∈Λ

(
εγt − ET (Λ)

)2
. (20)

We choose the quantity σT (Λ)/
√
T as it is reminiscent of the error margin provided by asymptotic

confidence intervals on the mean of independent and identically distributed random variables.

In the next paragraph, we consider the “Region + Behavior” configuration and we compute the

errors and confidence bounds for the four above foresting strategies for Γ, {I} and Γ0
def
=
{
C` ∩

An
}

16`61k 16n6N . Finally, in the last paragraph, we focus on {I} and compare the three possible

configurations “Region”, “Behavior” and “Region + Behavior”.

5.4.1. Assessment of the Proposed Methodology

In Table 3, for the two crossed hierarchies “Region + Behavior”, the forecasting errors ET (Λ)±

σT (Λ)/
√
T are computed for the entire set of predictions (namely, for Λ = Γ), for the global

consumption forecast only (Λ = {I}) and for the local forecasts (Λ = Γ0).

Theorem 1 was obtained for Λ = Γ, and as the theory guarantees, projection (with or without

an aggregation step) always improves the forecasts. The projection step without aggregation leads

to a decrease of prediction error of around 1%. The aggregation step leads to an improvement

of almost 3%; finally, in addition to ensuring that forecasts respect hierarchical constraints, the

“Aggregation + Projection” strategy reaches the best performance.
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ET(Γ)± σT(Γ)√
T

ET({I})± σT({I})√
T

ET(Γ0)± σT(Γ0)√
T

Benchmark 455.5± 1.1 205.8± 9.3 66.3± 0.1

Projection 450.7± 1.1 200.8± 9.2 66.3± 0.1

Aggregation 397.9± 1.0 172.0± 8.6 61.2± 0.1

Aggregation + Projection 396.0± 1.0 170.3± 8.5 61.1± 0.1

Table 3: ET (Γ)±σT (Γ)/
√
T (left – see Equation 20), ET ({I})±σT ({I})/

√
T (middle), ET (Γ0)±σT (Γ0)/

√
T (right)

(see Equation 20) for “Region + Behavior” clustering for the four strategies defined in Subsection 5.4 (“Benchmark”,

“Projection”, “Agregation” and “Aggregation + Projection”). ET (Γ) corresponds to L̃T ×|Γ| for the “Aggregation +

Projection” strategy. The prediction error ET ({I}) corresponds to the mean squared error (over the testing period)

of the global consumption and ET (Γ0) corresponds to a prediction error associated with local consumption forecasts.

The dark gray area corresponds to the best prediction error of the column.

Even though theoretical guarantees are only ensured for errors summed over all nodes, the

impact of our methods on global consumption predictions and on local predictions (i.e., predic-

tions at leaves) is positive. Indeed, our strategy “Aggregation + Projection” outperforms the

three strategies “Benchmark”, “Aggregation” and “Projection” for both global and local power

consumptions.

Finally, Figure 3 represents the global power consumption on the three last day of the testing

period and the daily average signed error on the last week for the four forecasts. The distributions

of the daily mean squared errors for these strategies are represented in Figure 4. We draw the same

conclusions for the daily prediction errors as for the average error on the entire test period (three

months): aggregation greatly improves the forecasts, projection does too, but to a lesser extent.

The box plots show that the variance of the error also decreases after the aggregation step.

5.4.2. Interest of the Segmentation

We now assess the impact of household segmentation (“Region”, “Behavior” or “Region + Be-

havior”) on the quality of our predictions. As the groups change according to which segmentations

are or are not taken into account, errors related to Γ or Γ0 can not be compared from a segmen-

tation to another. We thus focus here on the global consumption (namely, we compute errors

related to {I}). We compare our methods to a naive bottom-up strategy: at each time step t, we

forecast the global consumption y
{I}
t with the sum of local consumptions

∑
γ∈Γ0

xγt – in lieu of the

benchmark predictions x
{I}
t . Table 4 contains the prediction errors and the confidence bounds for
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(a) Forecasts at half-hour intervals on three days.
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(b) Daily average signed errors on a week.

Figure 3: Forecasts and errors associated with the four strategies “Benchmark”, “Projection”, “Aggregation” and

“Aggregation + Projection” and observations of global consumption (γ = I) at the end of the test period.
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Figure 4: Distribution over the test period of daily mean squared error of global consumption for the four strategies

“Benchmark”, “Projection”, “Aggregation” and “Aggregation + Projection”.

Clustering Benchmark Bottom-up Projection Aggregation Aggregation

+ Projection

Region 205.8± 9.3 189.9± 8.3 201.3± 9.1 187.8± 8.4 186.7± 8.4

Behavior — 208.4± 9.6 205.2± 9.3 179.3± 8.4 179.3± 8.4

Region + Behavior — 201.0± 8.5 200.8± 9.2 172.0± 8.6 170.3± 8.5

Table 4: ET ({I})± σT ({I})/
√
T (see Equation 20) for the fives strategies defined in Subsection 5.4 (“Benchmark”,

“Bottom-up, “Projection”, “Agregation” and “Aggregation + Projection”), with benchmark predictions (x
{I}
t that

are the same for all clusterings) made with General Additive Models and aggregated with ML-Pol algorithm, for the

three segmentations (“Region”, “Behavior” and “Region + Behavior”). The prediction error ET ({I}) corresponds

to the mean squared error (over the testing period) of the global consumption. The dark gray area corresponds to

the best prediction error of the table and the light gray area to the best one, for a given strategy.
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the five strategies and and the three configurations “Region”, “Behavior” and “Region + Behav-

ior”. For the “Bottom-up” strategy, the geographical segmentation “Region” provides the lowest

prediction error, that is much better than the one of benchmark forecasts. For all other strategies,

it is preferable to consider the “Region + Behavior” configuration. Therefore, using information

on the locality and the behavior of households is helpful to forecast global power consumption.

and the strategy ”aggregation + projection” strategy reaches the lowest error.

6. Conclusion

We proposed a three-step approach to forecasting electricity consumption time series at differ-

ent levels of household aggregation and linked by hierarchical constraints. After generating bench-

mark forecasts using generalized additive models, our method aggregates them with the algorithm

‘polynomially weighted average forecaster with multiple learning rates’. Finally, the forecasts are

projected onto a coherent subspace to ensure that the final forecasts satisfy the hierarchical con-

straints. A theoretical result ensures, via a regret bound, that this approach improves the average

root mean square error of the forecasts.

We tested our method on household electricity consumption data collected in the UK as part

of the ‘Energy Demand Research Project ’. Experimental results suggest that the successive steps

of aggregation and projection improve forecasts overall (and fortunately as the theoretical result

shows), but even better, that both the forecast of global consumption and local forecasts are also

improved. Experiments have also shown that the segmentation considered (regional, behavioral,

or both) matters. Specifically, we have seen that the use of forecasts of groups of households

segmented according to their region (with their own weather conditions) on the one hand and their

behavior on the other improves the global power consumption forecast.
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Appendix A. Standardization

In empirical machine learning, it is known that standardizing observations and benchmarks may

significantly improve results, and sequential learning is no exception (see Gaillard, Gerchinovitz,

Huard & Stoltz, 2019). In addition, standardization makes the calibration of the parameters of

the algorithm common to all the nodes, namely for each aggregation algorithm Aγ , we choose the

hyper-parameters sγ0 = s̆0. We can do so, because thanks to the preprocessing below, benchmarks

and observations will be of the same order. Let us fix γ ∈ Γ and t > 0. We consider the following

transformations, relying on statistics Sγ and Ĕ computed on T0 historical time steps:

yγt → y̆γt
def
=

yγt − x
γ
t

Sγ
Observations tranform (A.1)

xt → x̆t
def
= Ĕxt Benchmarks transform (A.2)

with Sγ = max
1−T06t60

|yγt − x
γ
t | and Ĕ

def
=

 1

T0

0∑
t=1−T0

xt x
T
t

−1/2

. (A.3)

We thus assume that the Gram matrix 1
T0

∑0
t=1−T0

xtx
T
t is invertible, which is a rather reasonable

assumption as long as T0 is large enough and the basic forecasts are generated independently of

each other so that they are not fully correlated. Our standardization process differs from the usual

methods but it provides the theoretical guaranties set out below. Furthermore, it makes sense for

the following reasons. Fixing γ ∈ Γ, when benchmarks and observations are bounded, Sγ is an

estimation of a bound on yγt −x
γ
t . The re-scaling of (yγt −x

γ
t ) by Sγ should provide transformed ob-

servations lying in [−1, 1] or some neighboring range. It also reduces and homogenizes the variances

for all the nodes. A simple example may illustrate this variance reduction. For deterministic bench-

marks, the variance of non-transformed observations satisfy Var
(
yγt
)

= Var
(
yγt −x

γ
t

)
. The variance

of standardized observations is then divided by
(
Sγ
)2

and we have Var
(
y̆γt
)

= Var
(
yγt
)
/
(
Sγ
)2
. For

T0 large enough, the variance of transformed observations should be less than 1. Indeed, with high

probability, the maximum of the absolute values of the random variable (yγt −x
γ
t ) on t = 1−T0, . . . , 0

(which is Sγ), is higher than its standard deviation
√

Var
(
yγt
)

and thus
(
Sγ
)2
> Var

(
yγt
)
. More-

over, the expectation of (yγt − x
γ
t ) should be close to 0 as soon as the benchmark forecasts are

correctly generated. Indeed, the more the benchmark forecast are relevant, the more the obser-

vations are re-centered. Concerning the benchmarks, our standardization is classic in the case of

centered benchmarks. The matrix Ĕ
2

would then be an estimation of the inverse of the co-variance
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matrix of vectors xt, and the multiplication of the benchmark forecasts by Ĕ would provide trans-

formed benchmarks whose co-variance matrix is close to the identity matrix. Here, we do not

recenter observations and benchmarks with some empirical mean as it is classically done (this

would be unconvenient for our regret analysis). Anyway, Subsection 5.3 provides some experi-

mental results which confirm that our preprocessing standardizes reasonably well observations and

benchmarks. Moreover, we tested classical standardization (with re-centering) on benchmarks and

obtained results similar to those presented in Section 5 (but, as hinted at above, no theoretical

guaranties would be associated with this classical standardization).

We run Algorithm Aγ on transformed benchmarks and observations with the initialization

parameter vector s̆0 (which does not depend on γ) and obtain a standardized prediction at node

γ, denoted by ȳγt . Then, we transform this output to get the (non-standardized) forecast

ŷγt
def
= Sγ ȳγt + xγt . (A.4)

For any vector ŭγ ∈ R|Γ|, we introduce the standardized regret associated with transformed obser-

vations and benchmarks, denoted by R̆γT (ŭγ) as:

R̆γT (ŭγ)
def
=

T∑
t=1

(
y̆γt − ȳ

γ
t

)2 − T∑
t=1

(
y̆γt − ŭγ · x̆t

)2
=

T∑
t=1

(
yγt − x

γ
t

Sγ
− ŷγt − x

γ
t

Sγ

)2

−
T∑
t=1

(
yγt − x

γ
t

Sγ
− ŭγ ·

(
Ĕxt

))2

=
1(
Sγ
)2 T∑

t=1

(
yγt − ŷ

γ
t

)2 − 1(
Sγ
)2 T∑

t=1

(
yγt −

(
xγt + Sγ

(
Ĕŭγ

)
· xt
)

︸ ︷︷ ︸
uγ ·xt

)2

. (A.5)

In the equations above, we define uγ
def
= δγ + Sγ

(
Ĕŭγ

)
where δγ

def
=
(
1{i=γ}

)
i∈Γ

denotes the

standard basis vector that points in the γ direction. Equivalently, ŭγ = Ĕ
−1

(uγ − δγ)/Sγ , so

there is a bijective correspondence between the vectors uγ and ŭγ . Therefore, by noticing that

xγt = δγ · xt, the regret associated with original benchmarks and observations is related to the

regret of transformed data by the following equation:

R̆γT (ŭγ) =
1(
Sγ
)2 T∑

t=1

(
yγt − ŷ

γ
t

)2 − 1(
Sγ
)2 T∑

t=1

(
yγt − uγ · xt

)2
=
RγT (uγ)(
Sγ
)2 . (A.6)
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Furthermore, as for any ŭ ∈ R|Γ|, Assumption 1 ensures

R̆γT (ŭγ) =
T∑
t=1

(
y̆γt − ȳ

γ
t

)2 − T∑
t=1

(
y̆γt − ŭγ

T
x̆t
)2

6 B
(
x̆1:T , y̆

γ
1:T , s̆0, ŭ

γ
)
, (A.7)

Combining the two previous equations yields the following proposition.

Proposition 1. For any γ ∈ Γ and any uγ ∈ R|Γ|, if Assumption 1 holds for Algorithm Aγ run on

transformed observations and benchmarks y̆γ1:T and x̆1:T , with the initialization parameter vector

s̆0, we have, for T > 0,

RγT
(
uγ
)
6
(
Sγ
)2

B
(
x̆1:T , y̆

γ
1:T , s̆0, ŭ

γ
)

where ŭγ = Ĕ
−1

(uγ − δγ)/Sγ . (A.8)

On the one hand, this preprocessing justifies boundedness assumptions (13) on observations

and benchmarks, that ensure some theoretical guaranties of the form requested by Assumption 1.

On the other hand, this preprocessing simplifies hyper-parameters search (for the aggregation step)

as we can choose the same for every series since they have similar statistics (scale and variance).

Appendix B. Aggregation Algorithm

Appendix B.1. Polynomially weighted average forecaster with Multiple Learning rates (ML-Pol)

The polynomially weighted average forecaster with Multiple Learning rates (ML-Pol) algorithm,

defined in Algorithm 1, aims to provide the best convex combination of benchmark forecasts

(generally called features or experts) (xit)i∈Γ to predict the time series (yγt )16t6T . Therefore, for

any time step t, it will output a convex vector uγt ∈ ∆Γ and the associated forecast ŷγt+1 =

uγt+1 · xt+1 =
∑

i∈Γ u
γ,i
t+1x

i
t+1. At each step, the algorithm computes the ith component of uγt

using the cumulative regret and learning rate of benchmark i. These quantities are defined in

Algorithm 1, in which, (x)+ denotes the vector of non-negative parts of the components of x and

E is a constant such as for any time step t and any node i ∈ Γ, |2(ŷγt − y
γ
t )xit| 6 E.

Appendix B.2. A scheme to extend the class of comparison from the simplex to an L1-ball

For the ML-Pol algorithm, we obtained an upper bound on RγT (∆|Γ|). However, there is no

reason for the best linear combination of benchmarks to be convex. Algorithm 2 presents a trick

introduced by Kivinen & Warmuth (1997) which extends the class of comparison from the |Γ|-

simplex to an L1-ball of radius α > 0 denoted by Bα and provides a bound on RγT (Bα). Let us fix
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Algorithm 1 Polynomially weighted average forecaster with Multiple Learning rates and gradient trick

aim: Predict the time series
(
yγt
)

16t6T

parameter: Bound E

initialization

uγ1 = (1/|Γ|, . . . , 1/|Γ|)

ŷγ1 = uγ1 · x1

∀ i ∈ Γ, R̃γ,i0 = 0 and ηγ,i0 = 0

for t = 1, . . . , T − 1 do

For each i ∈ Γ, update the cumulative regret of benchmark i

R̃γ,it = R̃γ,it−1 + r̃ γ,it where r̃ γ,it
def
= 2(ŷγt − y

γ
t )(ŷγt − xit)

For each i ∈ Γ, compute the learning rate ηγ,it =

(
E +

∑t
s=1

(
r̃ γ,it

)2)−1

Compute the weight vector uγt+1 = (uγ,it+1)i∈Γ defined as

uγ,it+1 =
ηγ,it
(
R̃γ,it )+∑

j∈Γ η
γ,j
t (R̃γ,jt

)
+

Output prediction ŷγt+1 = uγt+1 · xt+1 =
∑

i∈Γ u
γ,i
t+1x

i
t+1

a node γ ∈ Γ. The trick consists in transforming, at each round t, the benchmark vector xt into

the 2|Γ|-vector x̄t = (αxt| − αxt) – where | is the concatenation operator between vectors. The

algorithm Aγ is then run with these new benchmarks and it outputs the weight vector ūγt ∈ ∆2|Γ|.

Finally, a |Γ|-vector uγt ∈ Bα is computed from ūγt to provide the forecast uγt · xt = ūγt · x̄t.

We will actually see that we may associate any |Γ|-vector u ∈ Bα with a vector ū ∈ ∆2|Γ| such

as ū · x̄t = u · xt; the trick actually defines a surjection from ∆2|Γ| to Bα. Thus, to compete

against the best linear combination of benchmarks in Bα, it is enough to compete against the

best convex combination of benchmarks x̄t in a lifted space (which we may achieve, thanks to

algorithm Aγ). We now give all the details on how this trick works and indicate its impact on the

stated regret bounds. The following lemma introduces the surjection from ∆2|Γ| to Bα, which is

used in Algorithm 2.
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Lemma 1. For any real α > 0, the following function ψ is a surjection from ∆2|Γ| to Bα:

ψ :
∆2|Γ| −→ Bα

ū =
(
ūp | ūn

)
7−→ α(ūp − ūn),

where the vector ū ∈ ∆2|Γ| is decomposed in the two |Γ|-vectors ūp and ūn, which correspond to

the |Γ| first and the |Γ| last coefficients of ū, respectively.

Proof of Lemma 1. Denoting respectively by (u)+ and (u)− the non-negative and non-positive

parts of any vector u and by 1|Γ| the vector of size |Γ| of which all coordinates are 1, we introduce

the inverse function ψ−1:

ψ−1 :

Bα −→ ∆2|Γ|

u 7−→ 1
α

(
α−‖u‖1

2|Γ| 1|Γ| + (u)+

∣∣∣∣ α−‖u‖12|Γ| 1|Γ| + (u)−

)
.

First we will show that function images are in the right sets, meaning that for any u ∈ Bα,

ψ−1(u) ∈ ∆2|Γ| and for any ū ∈ ∆2|Γ|, ψ(ū) ∈ Bα. Secondly, we obtain the surjectivity of ψ by

proving that for any u ∈ Bα, ψ(ψ−1(u)) = u.

Proof that for any u ∈ Bα, ψ−1(u) ∈ ∆2|Γ|. We set u ∈ Bα. By definition for any i ∈ Γ, (ui)± > 0

and as u ∈ Bα, (α − ‖u‖1)/(2|Γ|) > 0. So, all the coefficients of ψ−1(u) are non-negative. Since∑
i∈Γ (ui)+ + (ui)− =

∑
i∈Γ |ui| = ‖u‖1, the sum of the coefficients of the vector ψ−1(u) equals 1:

∑
i∈Γ

((
ψ−1(u)

)i)p
+
((
ψ−1(u)

)i)n
=

1

α

∑
γ∈Γ

((
ui
)

+
+
(
ui
)
− +

α− ‖u‖1
|Γ|

)

=
1

α

(
‖u‖1 + α− ‖u‖1

)
= 1. (B.1)

and thus ū = ψ(u) ∈ ∆2|Γ|.

Proof that for any ū ∈ ∆2|Γ|, ψ(ū) ∈ Bα. With ū =
(
ūp | ūn

)
∈ ∆2|Γ|, using that all the coefficients

of ū are non-negative and that their sum equals 1 that is
∥∥ū∥∥

1
= 1, we get

‖ψ(ū)‖1
def
=
∥∥αūp − αūn

∥∥
1
6 α

∥∥ūp
∥∥

1
+ α

∥∥ūn
∥∥

1
= α

∥∥ū∥∥
1

= α. (B.2)

Proof that for any u ∈ Bα, ψ
(
ψ−1(u)

)
= u.

ψ
(
ψ−1(u)

)
=
α− ‖u‖1

2|Γ|
1|Γ| + (u)+ −

α− ‖u‖1
2|Γ|

1|Γ| − (u)− = u . (B.3)
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By running Algorithm Aγ with transformed benchmarks x̄t
def
=
(
αxt | −αxt

)
and parameter sγ0

(which provides weight vectors ūγt ), we get the bound

RγT (∆2|Γ|)
def
=

T∑
t=1

(
yγt − ūγt · x̄t

)2 − min
ūγ∈∆2|Γ|

T∑
t=1

(
yγt − ūγ · x̄t

)2
6 B(x̄1:T , y

γ
1:T , s

γ
0 , ū

γ). (B.4)

For any time step t = 1, . . . , T , and for any ū ∈ ∆2|Γ|, we obtain the equality of the two scalar

products ū · x̄t and ψ(ū) · xt:

ū · x̄t =
(
ūp | ūn

)
·
(
αxt | − αxt

)
= α

(
ūp − ūn

)
· xt = ψ(ū) · xt . (B.5)

Lemma 1 implies that for any uγ ∈ Bα, there is at least one vector ūγ ∈ ∆2|Γ| such that ψ(ūγ) = uγ

and we get the equality:

min
uγ∈Bα

T∑
t=1

(
yγt − uγ · xt

)2
= min

ūγ∈∆2|Γ|

T∑
t=1

(
yγt − ψ(ūγ) · xt

)2
= min

ūγ∈∆2|Γ|

T∑
t=1

(
yγt − ūγ · x̄t

)2
. (B.6)

So with, for any time step t = 1, . . . , T , uγt
def
= ψ(ūγt ), we obtain

RγT (Bα)
def
=

T∑
t=1

(
yγt − uγt · xt

)2 − min
uγ∈Bα

T∑
t=1

(
yγt − uγ · xt

)2
= RγT (∆2|Γ|) . (B.7)

This equality provides a bound on RγT (Bα) when predictions are ŷγt = ψ−1(ūγt ) · xt = uγt · xt (ψ−1

is defined in the proof of Lemma 1). With this trick, the bound (14) is still true by replacing |Γ|

(the dimension of the benchmarks xt) by 2|Γ| (the dimension of the new benchmarks x̄t) and the

bound E (previously equals to 4C2) by 2α(α + 1)C2 (the bound on the new prediction errors are

calculated below):

RT (Bα) 6 2α (α+ 1)C2 |Γ|
√
|Γ|(T + 1)

(
1 + ln(1 + T )

)
. (B.8)

The complete online algorithm leading to these bounds is summarized in Algorithm 2.

Bound on new prediction errors. Since boundedness assumptions (13) hold, the transformed bench-

marks x̄γt are bounded by αC. Moreover, ūγt ∈ ∆2|Γ| implies
∥∥ūγt ∥∥1

= 1, so we get∣∣ŷγt ∣∣ =
∣∣ūγt · x̄t∣∣ 6 ∥∥ūγt ∥∥1

∥∥x̄t∥∥∞ = αC . (B.9)

Moreover, as the observations are still bounded by C, we have |yγt − ŷ
γ
t | 6 |y

γ
t |+ |ŷ

γ
t | 6

(
α + 1

)
C

and we obtain a bound on the prediction errors:∣∣˜̀γ
t (x̄t)

∣∣ =
∥∥2
(
ŷγt − y

γ
t

)
x̄t
∥∥
∞ 6 2α(1 + α)C2 . (B.10)
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Algorithm 2 Scheme for on-line linear regression.

input Algorithm Aγ and bound on the weight vectors α > 0

for t = 1, . . . , T do

Get the benchmark vector xt and denote (where | is the concatenation operator between

vectors)

x̄t
def
=
(
αxt | − αxt

)
∈ R2|Γ|

Run algorithm Aγ on node γ with x̄t and get the weight vector ūγt =
(
ūγ+
t | ū

γ−
t

)
Output the weight vector uγt = α

(
ūγ+
t − ūγ−t

)
and predicts ŷγt = uγt · xt

Appendix C. Experiments

Appendix C.1. Behavioral Segmentation

Re-scaling and Gathering Time Series in a Matrix. For T0 > 0, we consider the |I| × T0-matrix

Y0 which contains the re-scaled historical power consumption time series: for any i ∈ I and any

1− T0 6 t 6 0,

(Y0)i,t
def
=
yi,t
ȳi
, with ȳi

def
=

1

T0

0∑
t=1−T0

yi,t. (C.1)

Low Rank Approximation. Since we are interested in power consumption, all the coefficients of

Y0 are non-negative - we will write Y0 > 0 and say that this matrix is non-negative. To reduce

dimension of non-negative matrices, Paatero & Tapper (1994) and Lee & Seung (1999) propose

a factorization method whose distinguishing benchmark is the use of non-negativity constraints.

Let us fix some integer r � min(|I|, T0), which will ensure a reduction of the dimension (we chose

r = 10 in the experiments of the next subsection). The non-negative matrix factorization (NMF)

approximates matrix Y0 by Y0 ≈ W?H?, where W? and H? are |I| × r and r× T0 non-negative

matrices. They are computed by solving:

(
W?, H?

)
∈ arg min

W,H> 0

∥∥Y0 −WH
∥∥2

F
= arg min

W,H> 0

∑
i,t

(
yi,t −

(
WH

)
i,t

)2
. (C.2)

We use the function NMF of the Python-library sklearn.decomposition to approach a local mini-

mum with a coordinate descent solver and denote by Ŵ the approximation of W?. Thanks to the

NMF, for any i ∈ I, r characteristics (the ith line of matrix Ŵ) are thus computed.
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Extracting and Re-scaling Characteristic Vectors. To give the same impact to each of these char-

acteristics, we re-scale the columns of Ŵ and define, for each household i, the vector

wi =

(
Ŵi,1∑
j∈I Ŵj,1

, . . . ,
Ŵi,r∑
j∈I Ŵj,r

)
. (C.3)

k-Means Clustering. The k-means algorithm (introduced by MacQueen et al. (1967)) is then used

on these r- vectors to cluster the households into a fixed number k of groups (which varies from

4 to 64 in our experiments). We recall below how this algorithm works. With {C1, . . . , Ck} a

k-clustering of set I, for any 1 6 ` 6 k, we define the center w̄` and the variance Var(C`) of cluster

C` by

w̄`
def
=

1

|C`|
∑
i∈C`

wi and Var(C`)
def
=

1

C`

∑
i∈C`

‖wi − w̄`‖2. (C.4)

In k-means clustering, each household belongs to the cluster with the nearest center. The best set

of clusters, denoted by
{
C?1 , . . . , C

?
k

}
– namely the best set of centers – is obtained by minimizing

the following criterion:

{
C?1 , . . . , C

?
k

}
∈ arg min
{C1,...,Ck}

k∑
`=1

∑
w∈C`

∥∥w − w̄`

∥∥2
= arg min
{C1,...,Ck}

k∑
`=1

|C`|Var(C`). (C.5)

In practice, we use the use KMeans function of the Python-library sklearn.cluster to compute

clusters.

Appendix C.2. Generation of the benchmarks

We refer to the monograph of Wood, 2006 for an exhaustive presentations of the generalized

additive models, which are commonly used to forecast the power consumption (see e.g, Goude

et al., 2014 and Gaillard et al., 2016). They assume that the power consumption is the sum

of independent exogenous (possibly non-linear) variable effects. We describe this model using

the specification we chose in our experiments. For a node γ ∈ Γ, we take into account some

local meteorological variables at the half-hour time step: the temperature τγ and the smoothed

temperature τ̄γ , the visibility νγ , and the humidity κγ . and some calendar variables: the day of

the week dt, the half-hour of the day ht ∈ {1, ..., 48} and the position in the year ρt ∈ [0, 1]. As

the effect of the half-hour ht is crucial to forecast power consumption, it is often more efficient to

consider a model per half-hour (see Fan & Hyndman, 2011 and Goude et al., 2014). The global
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model is then the sum of 48 daily models, one for each half-hour of the day. More precisely, the

considered additive model for the power consumption breaks down time by half hours:

yγt =
48∑
h=1

1ht=h

[
aγhy

γ
t−7×48 + sγ1,h

(
yγt−48

)
+ sγτ,h(τγt ) + sγτ̄ ,h(τ̄γt ) + sγν,h(νγt )

+ sγκ,h(κγt ) +

7∑
d=1

wγd,h1dt=d + sγρ,h(ρt)
]

+ noise. (C.6)

The sγ1,h, sγτ,h, sγτ̄ ,h, sγν,h, sγκ,h and sγρ,h functions catch the effect of the consumption lag, the

meteorological variables and of the yearly seasonality. They are cubic splines: C2-smooth functions

made up of sections of cubic polynomials joined together at points of a grid. The coefficients aγh

and wγd,h model the influence of the consumption at D-7 and of the day of the week; we consider a

linear effect for the consumption at D-7 (it achieved a better performance than a spline effect in

our experiments) and as the day of the week takes only 7 values, we write its effect as a sum of

indicator functions, and thus there are 7 coefficients wγd,h. As we consider a model per half-hour, all

the coefficients and splines are indexed by h. To estimate each model, we use the Penalized Iterative

Re-Weighted Least Square (P-IRLS) method Wood, 2006, implemented in the mgcv R-package, on

a training data set. At any node γ ∈ Γ, for a new round t, we then output the forecast

xγt =
48∑
h=1

1ht=h

[
âγhy

γ
t−7×48 + ŝγ1,h

(
yγt−48

)
+ ŝγτ,h(τγt ) + ŝγτ̄ ,h(τ̄γt ) + ŝγν,h(νγt )

+ ŝγκ,h(κγt ) +

7∑
d=1

ŵd,h1dt=d + ŝγρ,h(ρt)
]
. (C.7)

Appendix C.3. Observations and benchmarks Standardization

Once above benchmarks computed, they are standardized using the protocol presented in Ap-

pendix A. We assess the quality of the standardization for the configuration “Region + Behav-

ioral”, which refers to the two crossed segmentations “Region” and ‘ Behavioral”. As there are 7

regions, the set Γ consists of 16 × 7 + 16 + 7 + 1 = 136 nodes, but only 129 are non-empty. For

both standardized and non-standardized observations and benchmarks, we compute, for each node

γ ∈ Γ, the empirical mean and empirical standard deviation over the test period. The distributions

are plotted in Figures C.5 and C.6, respectively. Since the abscissa for non-standardized data is

in logarithmic scale, the mean and standard deviation of data differ a lot from a node to another.

For example, the right-hand point is the global consumption (γ = I), while points on the left cor-

respond to the consumptions of small clusters. Thus, standardization centers data and decreases
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0.1 kWh 1 kWh 10 kWh 100 kWh

(a) Non-standardized observations and bench-

marks.

−0.10 kWh −0.05 kWh 0.00 kWh 0.05 kWh 0.10 kWh

features

observations

(b) Standardized observations and benchmarks.

Figure C.5: Distribution of empirical means per cluster for non-standardized and standardized observations and

benchmarks.

standard deviations of observations, as desired. In addition, standard deviations of benchmarks are

close to 1. Figure C.7 represents correlation matrices of the |Γ|-vectors (xt)16t6T and (x̆t)16t6T ,

that contain the non-standardized and standardized benchmarks over the test period. This shows

that our standardization process is centering, re-scaling and de-correlating benchmarks. Finally,

Table C.5 gathers numerical values of the average, over γ ∈ Γ, of empirical means and standard

deviations (these values are indicated by dashed vertical lines on Figures C.5 and C.6). We also

compute the maximum of the absolute value of benchmarks and observations – “Bound” column of

the table. This gives an empirical approximation of the boundedness constant C – see boundedness

assumptions (13).

Mean Bound Standard deviation

Observations 9.53 570.02 3.65

benchmarks 9.54 570.87 3.53

Standardized observations -0.003 1.27 0.12

Standardized benchmarks 0.04 18.9 0.98

Table C.5: Mean, and maximum of absolute value and standard deviation of observations and benchmarks before

and after standardization
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0.1 kWh 1 kWh 10 kWh 100 kWh

(a) Non-standardized observations and bench-

marks.

0.50 kWh 1.00 kWh

features

observations

(b) Standardized observations and benchmarks.

Figure C.6: Distribution of empirical standard deviations per cluster, for non-standardized and standardized obser-

vations and benchmarks.

(a) Non-standardized benchmarks. (b) Standardized benchmarks.

Figure C.7: Correlation matrix of non-standardized (left) and standardized (right) benchmark vectors.
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