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Abstract

This paper proposes a three-stage approach to forecasting the electricity de-

mand time series of several areas belonging to the same region. First, time

series are aggregated on the basis of a spatio-temporal clustering approach,

and a three-level hierarchy is build. Second, benchmark forecasts are gen-

erated for all series using generalized additive models. Finally, the forecasts

are optimally projected onto a coherent subspace to ensure that the final

forecasts satisfy the hierarchical constraints. Our approach is tested on Al-

berta electricity demand data; experimental results suggest that successive

clustering and projection steps improve the benchmark forecasts both at the

aggregate level and at the disaggregated level.

Keywords: Spatio-temporal clustering, Reconciliation forecasting,

electricity demand forecasting

1. Introduction

1.1. Motivation: Electricity Demand Forecasting

To balance the supply and demand of electricity and keep the grid operating

24 hours a day, it is crucial to predict the electricity demand as accurately

as possible at various levels of aggregation. Predicting the overall electricity

demand is necessary in order to inject the right amount of electricity into

the grid at any given time. It is also necessary to forecast demand at a local

December 21, 2024



level in order to dispatch correctly the electricity into the grid. Thus, fore-

casts at various aggregated levels (bottom and top) are useful for an efficient

management of the electrical grid. In this work, we consider local electricity

demand time series that we aim to forecast (bottom-level), as well as the

sum of them (top-level). To do so, we first build a three-level hierarchy by

aggregating bottom-level time series based on a spatio-temporal clustering

approach. Clustering is adopted to account for similarities in consumption

patterns under the assumption of an unknown hierarchical structure, that is,

there is no prior knowledge of how local electricity demands should be clus-

tered to improve forecasting. Second, benchmark forecasts are independently

generated for all series (bottom-level, clusters and top-level) using generalized

additive models, which are powerful electricity demand forecasting models -

see, among others, Pierrot and Goude (2011) for further details. Noticing

that these time series may be correlated (they highly depend on quite similar

weather condition, e.g.) and are linked through summation constraints, our

setting can be situated within the broader field of reconciliation time series

forecasting. Therefore, the forecasts are optimally reconciled using the Min-

imum Trace reconciliation approach (MinT) introduced by Hyndman et al.

(2011). This ensures that the final forecasts satisfy the hierarchy. In short,

our approach consists of three stages:

• Building a hierarchy based on a spatio-temporal clustering of the bot-

tom level times series

• Training a forecasting model for each time series

• Reconciliating optimally the forecasts.

Our approach is tested on Alberta electricity demand data; experimental

results suggest that successive clustering and reconciliation steps improve

the benchmark forecasts both at bottom and top levels.
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1.2. Related works

This work takes inspiration from literature in different fields. In particular,

we consider previous studies discussing forecasting methods for electricity

demand predictions, but also papers using clustering techniques in this con-

text. Moreover, it also relates to spatio-temporal clustering literature and to

more recent works employing forecast reconciliation to enhance the forecast-

ing accuracy of electricity demand.

Forecasting Electricity Demand. Electricity demand strongly depends on cal-

endar and weather exogenous variables, so a lot of performing forecasting

models are based on regression rather than time series methods. Moreover,

from an operational point of view, it is generally preferable to use models

based on exogenous variables only, as they are easier to interpret and are

not dependent on the quality of recent data. This work focuses on offline re-

gression methods. However, it should be noted that when there is an access

to recent data, classical time series methods like ARIMA (see, ammong oth-

ers Fard and Akbari-Zadeh 2014) as well as recurrent neural networks based

models (e.g., Kong et al. 2017) are efficient. Moreover, these recent data can

be used to update models trained in a regression framework with online or

transfer learning methods (see, among others, Gaillard et al. 2016 and Obst

et al. 2021). The relationship between electricity demand and exogenous

variables is rarely linear, which is why Generalized Additive Models (GAMs)

are particularly effective. Studied by Fan and Hyndman (2010) and Pierrot

and Goude (2011), they model the expected demand as a sum of indepen-

dent exogenous variable effects, which are approached with smooth functions.

Load forecasting has not escaped the current deep learning trend (see, among

others Keisler et al. 2024) and many applications in the electrical field, based

on neural networks have been successfully carried out (see Massaoudi et al.

2021 for a quite recent review). Finally, Chen et al. (2004), Taieb and Hyn-

dman (2014) and Dudek (2015) proposed efficient load forecasting methods

based on and support vector machine, gradient boosting and random forests,

respectively.
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Clustering Electricity Demand. Clustering belongs to unsupervised learning

and has been frequently used for classifying electricity demand profiles. His-

torically, it has been used for dealing with large datasets of single energy

users’ demand profiles - see Chicco (2012) for a comprehensive review of

clustering techniques used for this aim. Both hierarchical clustering (e.g.

Alonso et al., 2020) and k-means (e.g. Dong et al., 2022, Syed et al., 2021)

methods are widely used for this aim. However, clustering techniques have

also been employed to classify time series of electricity demand of more ag-

gregated levels. For example, Chévez et al. (2017) proposed to use k-means

for clustering areas with similar consumption patterns in La Plata region, Ar-

gentina, while Zhang et al. (2021) adopted a similar approach for clustering

districts of Zhejiang Province, China. Our paper is in line with this second

strand of literature because we are interested in clustering spatial areas –

and not individual customers – with similar demand patterns.

Spatio-Temporal Clustering. Spatio-temporal clustering is the process of group-

ing units based on both their spatial and temporal similarities (Kisilevich

et al., 2010) and it is a relatively new field of temporal data mining. A

recent review on the spatio-temporal clustering approach can be found in

Ansari et al. (2020). While the temporal dimension is used to assess the

similarity of the spatial units’ evolution over time, the spatial dimension

describes how these are localized in the space. In this paper, we adopt

a spatio-temporal clustering approach as we conjecture that electricity de-

mand patterns depend also on unobservable geographical factors. We expect

forecasts obtained from models using spatio-temporal clustering to be more

accurate compared to those using time series clustering if this assumption

holds. In this paper, following the majority of studies dealing with elec-

tricity demand data, we consider a distance-based clustering approach. In

sum, distance-based approaches transform the complex temporal patterns

of the units – spatial aggregates in our instance – into feature vectors. In

doing so, standard clustering algorithms, such as the k-means or a hierarchi-

cal clustering procedure, can be used. Once dealing with spatial dimension,
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however, spatially penalized clustering algorithms are commonly considered.

The penalization serves as a way of enhancing spatial clustering in the data.

In the context of partitional algorithms, Pham (2001) proposed a k-means

algorithm with spatial constraint, which has been extended to the spatio-

temporal setting by D’Urso et al. (2019). From the hierarchical clustering

perspective, Chavent et al. (2018) recently proposed a Ward Jr (1963)-like

algorithm, based on a modified dissimilarity matrix. In Chavent et al. (2018),

the dissimilarity is defined as a convex combination of geographical distances

and the dissimilarity matrix computed from attribute variables. Mattera and

Franses (2023) have extended the algorithm of Chavent et al. (2018) to the

case of spatio-temporal data.

Forecast Reconciliation. Over the past few decades, there has been a no-

table expansion in the field of reconciliation forecasting, accompanied by

the advent of methods that guarantee coherent forecasts and enhance fore-

cast precision - Athanasopoulos et al. (2023) offers an exhaustive review of

research on the subject. In this work, we use the approach proposed by

Wickramasuriya et al. (2019), which relies on orthogonal or oblique projec-

tions of the vector of forecasts over a predefined constraint sub-space. In an

electricity demand forecasting framework, Goehry et al. (2019) and Brégère

and Huard (2022) employ reconciliation methods, namely bottom-up and

projection, respectively, with a view to enhancing forecasts at various ag-

gregated levels. Recent developments in forecast reconciliation literature (Li

et al., 2019, Mattera et al., 2024, Zhang et al., 2024) also consider that the

hierarchical structure is unknown. We further differentiate from these stud-

ies by proposing to estimate the hierarchical structure with spatio-temporal

clustering.

1.3. Main contribution

In sum, the paper’s contribution is threefold. First, we contribute to the

literature on electricity demand forecasting by adding positive evidence on

the usefulness of forecast reconciliation in this context. Moreover, we adopt
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a forecast reconciliation with cluster structure, given that the hierarchy is

unknown. Therefore, we show that forecast reconciliation with cluster struc-

ture – as discussed in Mattera et al. (2024) and Zhang et al. (2024) – is useful

in the field of electricity demand forecasting. Consequently, the second con-

tribution of this paper is to the forecast reconciliation literature, in that we

propose a MinT forecast reconciliation procedure based on spatio-temporal

clustering. Previous papers dealing with unknown hierarchies considered

temporal dimension only. Our results indicate that, in the case of electricity

demand data, reconciled forecasts obtained from spatio-temporal clustering

are more accurate than those obtained from time series clustering. In other

words, we show the existence of benefits from the forecasting perspective in

including spatial dimension into the clustering problem while working with

a hierarchical structure of unknown form. Finally, we propose a simple ap-

proach to extend the Chavent et al. (2018) algorithm to the case of hourly

time series. The consideration of hourly time series introduces a degree of

complexity to the clustering model, because the commonly used temporal

distances considered by previous studies (for an overview, see Dı́az and Vi-

lar, 2010) are not well-suited in this case. Therefore, to measure temporal

dissimilarity across the spatial units, we propose the following procedure. We

first divide the electricity consumption time series into 24-hour patterns (e.g.

see Voulis et al., 2018, Durante et al., 2023) and obtain 24 multivariate time

series for each spatial unit, one for each hour of the day. We then compute 24

distance matrices and calculate a consensus temporal distance matrix using

the DISTASIS algorithm (Abdi et al., 2005, 2012). In doing so, we optimally

weight the differences between the units observed at different hours of the

day. The rest of the paper is structured as follows. Section 2 discusses the

adopted methodology in detail, describing the forecast reconciliation with

cluster structure and the adopted spatio-temporal clustering approach. Sec-

tion 3 presents the data, while the forecasting experiment design and the

results are shown in Section 3.3. Section 4 concludes with final remarks and

future research directions.
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2. Methodology

Our intention is to forecast the time series of local (bottom-level) electricity

demand in m areas
{
(bi

t)t>0, i = 1, . . . ,m
}

as well as the global demand

(dt)t>0, namely the sum of local time series: dt =
∑m

i=1 b
i
t, for any time

step t. To do so, we first cluster the space-time series (bi
t)t>0 into k clusters.

By re-indenting the time series according the clustering such that the first

n1 belong to Cluster 1, the following n2 to Cluster 2 and so one, and we

define m0 = 1, and, for ℓ = 1, . . . , k mℓ =
∑ℓ

j=1 nj, and we create the k

middle-level time series
{
(cℓt)t>0, ℓ = 1, . . . , k

}
with cℓt =

∑mℓ

i=mℓ−1
bi
t, for any

time step t. This induces the hierarchy represented in Figure 1. For any time

dt

c1t

b1
t b2

t . . . bm1
t

c2t

. . .

. . . ckt

b
mk−1+1
t

. . . bm
t

Figure 1: Representation of the three-level hierarchy induced by a clustering of the space-
time series (bit)t>0 into k clusters.

step t, with bt be the vector of the m bottom-level time series at time t, and

n = m + k + 1, we define the n-dimensional vector containing all the time

series yt:

yt =
[
dt c1t · · · ckt bT

t

]T
= Sbt ,
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where S is the n ×m “summing” or “structural” matrix defined thanks to

the clustering. It is given by

S =

[
A

Im

]
with A =



1 . . . 1 1 . . . 1 . . . 1 . . . 1

1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...

︸ ︷︷ ︸
n1

0 . . . 0 ︸ ︷︷ ︸
n2

1 . . . 1 . . . ︸ ︷︷ ︸
nk

1 . . . 1



← Top-level

← Cluster 1

← Cluster 2
...

← Cluster k

.

Once the time series vector (yt)t>0 has been obtained, using some exogenous

variables (xt)t>0, we train n statistical or machine learning models to forecast

each of its component. For i = 1, . . . , n and any time step t, we denote by

f̂i the model which outputs the prediction ŷit = f̂i(xt) of yit. The forecasts

are then gathered into a vector ŷt. Finally, we update them using a linear

reconciliation method, which is based on the estimation of a matrix G, so

that the final forecasts are

ỹt = SGŷt .

Similarly to Wickramasuriya et al. (2019), we consider linear reconciliations

such that the reconciliation matrix ee qual to

G =
(
S′W−1S

)−1
S′W−1, (1)

with W , a n × n definite positive matrix. To sum-up, our three-steps ap-

proach relies on the estimations of the summing matrix S (obtained with the

clustering), the forecasting models
(
f̂i
)
1≤i≤n

and W , the matrix needed to

define the reconciliation matrix G. To validate our procedure, we cut the

data into three sub-data sets: the training data set is used for the estima-

tion of the clustering structure and of the models, the calibration data set

is for the estimation of the reconciliation matrix G. Finally, we assess the

relevance of our approach on a testing test. In what follows, we detail each

step of our procedure, illustrated in the diagram in Figure 2.
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Clustering

Spatial information

Forecasting

Exogenous variables xt

Reconciliation

k clusters and

S ∈ Rn×m, n = m+ k + 1 f̂ =
(
f̂i
)
1≤i≤n

n models G

m time series

bt ∈ Rm yt = Sbt ŷt = f̂(xt) ỹt = SGŷt

Training data test Calibration data test Testing data test

Figure 2: Clustering, Forecasting, and Reconciliation Process Flow.

2.1. Hierarchical Spatio-Temporal Clustering of Hourly Data

We highlight that, along with W , also the knowledge of the summation

matrix S is required to optimally reconcile base forecasts. In particular,

we note that the summation matrix S depends on the aggregation matrix

A, which is unknown in our setting as it depends on the clustering we set.

Therefore, to implement optimal reconciliation via the reconciliation pro-

cedure defined in Equation (1), we need to define a suitable approach for

estimating the cluster structure of the data. We propose to estimate such

a structure considering the similarity in both time and spatial domains. In

doing so, we conjecture that electricity demand time series depend also on

unobservable geographical factors so that better clustering can be achieved

if the spatial dimension is taken into account. It is thus anticipated that

forecasts reconciled with spatio-temporal clustering will prove more accurate

than those reconciled with temporal clustering. For this aim, we consider the

weighted Ward-like hierarchical clustering algorithm as discussed in Chavent

et al. (2018) and Mattera and Franses (2023), where the temporal dimension

is suitably weighted with the spatial dimension. In general, any Ward-like

hierarchical clustering approach starts with an initial partition with m clus-

ters of singletons. Then, at each step, the algorithm aggregates two clus-

ters according to an objective function related to the within-cluster inertia.

More precisely, let us consider the set of the m bottom-level time series and
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Pk = {C1, . . . , Ck} ∈ P
(
{1, . . . ,m}

)
, any partition of the time series into k

clusters. For any ℓ = 1, . . . , k, the weighted within-clusters inertia I
(
Cℓ
)
is

defined as

I
(
Cℓ
)
= (1− α)

∑
(i,i′)∈Cℓ×Cℓ

wiwj

2
∑

j∈Cℓ wj

dt(i, i
′)2 (2)

+ α
∑

(i,i′)∈Cℓ×Cℓ

wiwi′

2
∑

j∈Cℓ wj

dg(i, i
′)2 ,

where wi is the weight associated to the ith time series, dt(i, i
′)2 and dg(i, i

′)2

are squared distances between times series i and i′ defined over some tem-

poral and geographical spaces, respectively. The parameter α balances these

two distances. In the absence of any a prior information, we assume all time

series to be equally important and set wi = 1/m,∀i = 1, . . . ,m. We note

that, the smaller the inertia I
(
Cℓ
)
is, the more homogeneous are the obser-

vations in cluster Cℓ. The key idea in Ward’s method is to minimize the in-

crease in within-cluster inertia defined in Equation (2) when merging clusters.

The construction of the partitions follows a Ward-like hierarchical procedure,

which is greedy. Indeed, the clustering algorithm starts with the initial par-

tition formed by m distinct clusters of all singletons: Pm =
{
{1}, . . . , {m}

}
.

Then, to decide which clusters to merge at each step, it considers all possible

pairs of clusters and calculates the total within-cluster inertia that would

result from merging each pair. Those minimizing the total within-cluster

inertia are merged. After merging two clusters Cℓ and Cℓ′ , the algorithm

computes the inertia between the newly merged cluster and all the remain-

ing ones. The process of merging clusters continues iteratively until all the

m time series are in one single cluster P1 = {1, . . . ,m}.

Setting of the number of cluster k. The main benefit of a hierarchical cluster-

ing algorithm compared to the k-means is that the first does not require the

selection of the number of clusters k in advance. The selection of k is done

ex-post, through the automatic elbow criterion (see Morgado et al., 2023).
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Setting of the balance between temporal and geographical information: α.

The parameter α can be either fixed by the user or selected automatically.

To select the optimal value of α, Chavent et al. (2018) proposed a heuristic

method aimed to balance temporal and geographical homogeneity in the

clustering process. The approach evaluates how the trade-off between these

two criteria changes with α. Two metrics, Qt for temporal cohesion and

Qg for geographical cohesion, are calculated for different values of α. The

optimal α is identified either at the point where the two metrics intersect or by

minimizing the squared difference between them. In this paper, we estimate α

automatically following this procedure. For further details, interested readers

can refer to Chavent et al. (2018) and related papers (e.g. see Bucci et al.,

2023, Morelli et al., 2024, Mattera and Franses, 2025).

Setting of the temporal and geographical distances. It remains to define the

temporal and geographical distances dt(·, ·) and dg(·, ·), respectively. Fol-

lowing Mattera and Franses (2023), we define the dg(·, ·) as the Euclidean

distance in the geographical coordinates, namely, for any time series m, the

latitude and the longitude of the barycenter of the area under consideration.

Although other approaches can also be considered (e.g. see Fouedjio, 2016,

Mattera, 2022), this choice is enough to provide a soft spatial constraint to

the partition. About the temporal distance, dt(·, ·), we must remark that

the electricity demand data is available at hourly frequency. This high fre-

quency introduces a higher degree of complexity into the clustering problem,

because the commonly used temporal distances considered by previous stud-

ies are not well-suited in this setting. Following a common idea in previous

research (e.g. see Voulis et al., 2018, Durante et al., 2023), for each electricity

consumption time series bit, we split it into 24-hour patterns, obtaining 24

multivariate time series bi
t =

[
bi1,t, b

i
2,t, . . . , b

i
24,t

]T
with daily frequency. We

define the temporal distance as the average correlation-based distances over

11



the 24 hours:

dt(i, i
′) =

1

24

24∑
h=1

√
2[1− ρi,i′(h)] , with ρi,i′(h) = cor(bih,t, b

i′

h,t)

the pairwise correlation coefficient between the series bih,t and bjh,t in the

hth hour of the day (in practice, we estimate these coefficients on the training

data set). Therefore, the more correlated demand patterns are for all hth hour

of the day, the more similar the two areas i and i′ are. We highlight that

instead of simply averaging all the distances, it could have been appropriate

to assign λh weights to each hth hour and therefore compute a compromise

(or consensus) distance. We address the task of the compromise computation

with the DISTATIS algorithm (Abdi et al., 2005, 2012). We finally emphasize

that, to make the temporal and spatial dimensions comparable, we consider

representative load patterns (RLPs) by normalizing the two distances defined

above:

d̃(i, i′) =
d(i, i′)

max(j,j′)∈{1,...,m}2 d(j, j′)
, for d = dt and d = dg .

Once the clustering Pk = {C1, . . . , Ck} defined, time series are re-intended so

that the first ones belong to C1 and so on; and the middle-level time series

c1t , . . . c
ℓ
t are computed.

2.2. Electricity Demand Forecasting Models

As previously discussed in the literature review (Subsection 1.2), Generalized

Additive Models (GAMs, see Wood 2017 for a comprehensive introduction)

are an effective semi-parametric approach for forecasting electricity demand.

They model the demand with a sum of independent, exogenous (potentially

non-linear) variable effects. In the experiments of Section 3, we consider local

meteorological and calendar exogenous variables. The data set includes tem-

perature readings at hourly intervals from a number of weather stations. To

every area i = 1, . . . ,m (bottom level), we associate a single weather station
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(either a station in the area under consideration, or the station geographical

ly closest to the area) and denote (τ it )t>0 its temperature time series. For the

aggregated levels, the temperature time series of the areas included in the

aggregation are averaged. Therefore, for each i = 1, . . . , n, we have access

to a temperature time series (τ it )t>0. As the incorporation of an exponen-

tial smoothed temperature, which models the thermal inertia of buildings, is

likely to enhance the quality of forecasts (see, e.g. Goude et al., 2013), we

create the n smoothed temperature times series defined by{
τ i1 = τ i1
τ it = θτ it−1 +

(
1− θ

)
τ it , for any t ≤ 2 and θ ∈ [0, 1] .

For a time step t, the following calendar variables are also considered: the

day of the week dt (equal to 1 for Monday, 2 for Tuesday, etc.), the hour of

the day ht ∈ {1, . . . , 24}. We emphasize that we implicitly assume weather

variables τ it , for any i = 1, . . . , n, to be available (and deterministic) at time

t. In an operational context, it will obviously not be the case and to compute

the load forecasts, it is common to use weather predictions. Finally, to model

a potential change in the demand during and after the covid pandemic, we

denote by t0 the time of the beginning of the lockdown imposed as a conse-

quence of the propagation of the disease (May 1st, 2020). All the variables:

t, dt, ht, τ
i
t , τ

i
t, for all i = 1, . . . , n are gathered in the vector of exogenous

variables xt. The more aggregated level the time series, the smoother the

demand of electricity and the easier it is to forecast. Therefore, in the case of

middle and top-level time series forecasting, a greater number of exogenous

variables may be considered than in the case of bottom-level time series.

The additive models for the electrical demand time series that have been

subjected to consideration are as follows:

• For the bottom-level time series:

f̂ i(xt) =
7∑

d=1

24∑
h=1

α̂i
d,h1dt=d1ht=h + α̂i

covid1t>t0 .
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• For the middle-level time series:

f̂ i(xt) = ŝiτ
(
τ it
)
+

7∑
d=1

24∑
h=1

α̂i
d,h1dt=d1ht=h + α̂i

covid1t>t0 .

• For the top-level time series:

f̂ i(xt) = ŝiτ
(
τ it
)
+ ŝiτ

(
τ it
)
+

7∑
d=1

24∑
h=1

α̂i
d,h1dt=d1ht=h + α̂i

covid1t>t0 .

The ŝiτ and ŝiτ functions catch the effect of the temperatures. They are cubic

splines: C2-smooth functions made up of sections of cubic polynomials joined

together. The coefficients α̂i
d,h, α̂

i
covid model the influence of the hour, the

day of the week and the break after the covid pandemic. To estimate each

model, we use the Penalized Iterative Re-Weighted Least Square (P-IRLS)

method of Wood (2017), implemented in the R-package mgcv, on a training

data set.

2.3. Optimal reconciliation

We recall that choices for the matrix W in the reconciliation formula

G =
(
S′W−1S

)−1
S′W−1,

lead to different reconciliation approaches. Indeed, according to Wickrama-

suriya et al. (2019), the optimal minimum trace reconciliation is obtained by

setting W = Σ̂, the variance-covariance matrix of the corresponding base

forecast errors. With W = In we obtain an orthogonal projection and get

the solution of the Ordinary Least Squares (OLS) reconciliation (Hyndman

et al., 2011). Following Figure 2, we estimate the covariance matrix Σ̂ on

the calibration data set.
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3. Forecasting electricity demand in Alberta, Canada

In what follows, we discuss the empirical experiment to data about the elec-

tricity demand in Alberta, Canada. We presents the data first, and then

discuss the cluster structure obtained considering the procedure explained

in Section 2. We compare the results with the same clustering approach

but without considering geographical information, that is setting α = 0 in

Equation (2). Codes and data are provided on a public Github repository1.

3.1. The underlying data sets

The Alberta Electric System Operator (AESO) is dedicated to assuming a

position in facilitating the transformation of the province’s electricity sector,

while guaranteeing the uninterrupted provision of power to Albertans. It

provides open source electricity demand data2 for the 42 areas in the region

at hourly intervals from January 1st, 2011 to October 31st, 2023. Temper-

ature data come from the NOAA3 data base: we selected several weather

stations (with records available over the considered period) in Alberta re-

gion. Smoothed temperatures are computed with θ = 0.98. Both observed

and smoothed temperatures are plotted in Figure 3 for one of the weather

stations. Table 1 sums up the variables of the data set and gives their range.

The electricity demand, ranging from 0 to 2326 MW, highlights the diversity

in power consumption across different times and areas, reflecting variations

likely influenced by AESO areas-specific factors. Temperature, a critical vari-

able for modeling energy demand, spans an extensive range from -46°C to

40°C, capturing extreme climatic conditions that significantly impact heating

and cooling requirements. The smoothed version of the temperature, with

a narrower range of -36°C to 30°C, likely represents a processed version to

remove noise or account for lag effects in temperature-related energy use.

1https://anonymous.4open.science/r/clustering_and_reconciliation-7647
2https://www.aeso.ca/market/market-and-system-reporting/data-requests/

hourly-load-by-area-and-region/
3National Oceanic and Atmospheric Administration, https://www.noaa.gov/
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Figure 3: Observed and smoothed temperatures for the weather station “CLARESHOLM”
through 2019.

Variable and description Range / Value

Date From January 1, 2019 to October 31, 2023 (hourly)
Area 42 numbers
Weather station 22 numbers
Electricity demand From 0 to 2326 MW
Temperature From −46°C to 40°C
Smoothed temperature From −36°C to 30°C
Hour (integer) From 1 to 24
Day of the week (integer) From 1 (Monday) to 7 (Sunday)

Table 1: Summary of the variables provided and created for each area of the
data set.

The training data set contains two full years of data: from January 1st, 2019

to December 31st, 2020. The calibration data set contains a full year of data:

from January 1st, 2021 to December 31st, 2022. The testing data set con-

tains the data available from the end of the calibration set: from January 1st,

2022 to October 31st, 2023. Figure 4 shows the distribution of the electricity

demand time series for the 42 AESO areas, distinguishing between train-

ing, calibration and testing datasets. With few exceptions (i.e. areas 25, 33
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Figure 4: Box-plots of the 42 Alberta electricity demand time series.

and 35), for the vast majority of AESO areas we find that the distributions

of electricity demand between the different data sets are quite similar, sug-

gesting that the information captured by the models during training should

generalize well to both calibration and testing data sets. These similarities

are particularly important as it also ensures that the cluster structure defined

during the training phase remains consistent across calibration and testing

phases, supporting the robustness of the clustering approach. Such consis-

tency is crucial because it maintains the interpretability and applicability of

the clusters, ensuring they reflect the same underlying relationships in all

phases of the analysis. Moreover, the similarity between the calibration and

testing datasets is even more critical, as calibration data plays a pivotal role

in determining the reconciliation matrix used to adjust forecasts for accuracy.

If the calibration and testing distributions are aligned, the reconciliation pro-

cess is more likely to yield adjustments that are effective and representative

of real-world demand patterns. This alignment strengthens the validity of

the forecasting model, as the adjustments made during calibration will mir-

ror the conditions encountered during testing, leading to improved forecast

reliability. Thus, the observed distributional consistency across datasets is

a promising indicator of both model robustness and the effectiveness of the

reconciliation process.
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3.2. Cluster structure

Before moving to electricity demand forecasting, we investigate the cluster

structure in terms of spatio-temporal load patterns in the Alberta region. We

adopt the hierarchical spatio-temporal clustering based on the mixed inertia

introduced in Equation (2). Optimizing the parameter α using the procedure

proposed in Chavent et al. (2018) and described in Section 2.1 gives some

indication about the relevance of geographical information for the spatio-

temporal clustering: the larger α is, the more importance is given to the

spatial information. In the case of temporal clustering, we simply set α = 0.

In the case of Alberta electricity demand patterns, as shown in Figure 5, the

temporal homogeneity and spatial homogeneity curves cross when α takes a

value equal to 0.3. Therefore, we find that the spatial dimension is impor-

tant to adjust the partition based on the temporal dimension only, which

still remains the most relevant in defining the cluster structure of electricity

load patterns. Using the automatic elbow algorithm, we detect k = 4 for

the temporal clustering and k = 2 for the spatio-temporal approach. Figure

6 shows the comparison of the obtained cluster structures, considering both

temporal and spatio-temporal approaches. Black points in the figure corre-

spond to the weather stations used to extract information on temperature.

Temperature data for areas without weather stations is taken from the clos-

est station in the geographical space. We remark that the temporal cluster

structure only reflects demand fluctuations over time to define similarities

and discards possible similarities due to spatial proximity. The resulting

clusters do not exhibit strong spatial cohesion, and two larger groups with

highly synchronized temporal profiles are found. Then, the other two clusters

include only two AESO areas each (AREA 13 and AREA 20 on one side and

AREA 21 and AREA 52 on the other side), which could be outliers in terms

of load patterns. On the other side, spatio-temporal results reflect a balance

between temporal synchronization and geographical location. In general,

we notice that some areas that were temporally similar but geographically

distant in the previous clustering now fall into different clusters, while ge-
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Figure 5: Optimal α, defining the relevance of spatial dimension, selected according to
the procedure proposed in Chavent et al. (2018). The larger α, the more important is the
spatial dimension.

ographically proximate areas are grouped despite minor differences in their

temporal patterns. Comparing the results of the two clustering approaches

more precisely, we observe that the spatio-temporal approach provides a more

compacted partition, an isolated area in the fourth cluster is now matched

with its neighbors. In general, the spatio-temporal approach suggests the ex-

istence of two large clusters in the Alberta region, that is, north and south,

with distinct consumption patterns.
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Temporal clustering Spatio−temporal clustering

Figure 6: Clustering. Black points correspond the weather stations. If there is two or more
stations in the it is because one is associated with the corresponding and the other(s) with
close region(s).

3.3. Results

In what follows, we compare the out-of-sample accuracy of the unrecon-

cilied forecasts with respect to different reconcilation approaches – bottom-

up (BU), OLS and MinT – using either no cluster structure at all, where

the matrix A = 1T, temporal cluster structure and spatio-temporal as de-

fined in Figure 6, and the “ALL” approach proposed in Mattera et al. (2024)

where both cluster structures are combined. In the case of bottom-up, we

consider three different approaches, that is, the standard bottom-up without

the clustering structure and the bottom-up with clusters. In this last case,

the forecast for the top-level series is obtained from the cluster aggregates

(i.e. middle-level) rather the bottom series themselves. Table 2 presents a

20



comparison of different reconciliation approaches for the top-level series, that

is, the electricity demand for the whole Alberta region. The out-of-sample

accuracy is evaluated under two distinct evaluations based on two metrics,

the Root Mean Squared Error (RMSE) and Mean Absolute Percentage Er-

ror (MAPE). The ”Base” approach represents the baseline model, where no

Clustering No Temporal Spatio-temporal
RMSE · MAPE RMSE · MAPE RMSE · MAPE

Base 314 MW · 3.70 % 314 MW · 3.70 % 314 MW · 3.70 %
BU 484 MW · 5.41 % 320 MW · 3.80 % 318 MW · 3.77 %
OLS 311 MW · 3.66 % 312 MW · 3.67 % 311 MW · 3.66 %
MinT 301 MW · 3.55% 302 MW · 3.56 % 291 MW · 3.42 %

Table 2: RMSE and MAPE on testing data set for top-level series, that is, the entire
Alberta region. The use of spatio-temporal clustering always improves the out-of-sample
accuracy. Considering the alternative reconciliation approaches, the MinT based on spatio-
temporal clustering provides the best results.

reconciliation is applied, resulting in a RMSE of 314 MW and a MAPE of

3.70%. This performance serves as a reference point for evaluating the ef-

fects of different reconciliation methods. The BU approach generally yields

higher RMSE and MAPE values compared to this baseline. Specifically, in

the case of no clustering, BU results in 484 MW for RMSE and 5.41% for

MAPE, both of which are significantly worse than the baseline performance.

The OLS reconciliation method delivers results that are close to, although

a bit more accurate than, the baseline. Surprisingly, the results of the OLS

reconciliation do not differ much considering alternative assumptions on the

cluster structure. With no clustering, OLS achieves an RMSE of 311 MW

and a MAPE of 3.66%, which is slightly better than the baseline. The perfor-

mance remains relatively stable across different clustering structures. Indeed,

for temporal clustering, OLS achieves an RMSE of 312 MW and a MAPE of

3.67%, while for spatio-temporal clustering, the results are almost identical

to the no-clustering case with 311 MW and 3.66% for RMSE and MAPE,
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respectively. The MinT reconciliation, however, provides the best overall

performance across all scenarios. Without any clustering, MinT achieves the

lowest RMSE of 301 MW and the lowest MAPE of 3.55% compared other rec-

onciliation approaches, thus outperforming both the baseline and the other

reconciliation methods. When temporal clustering is applied, the MinT per-

formance does not improve, with RMSE of 302 MW and MAPE of 3.56%.

However, the best improvements are found with the spatio-temporal cluster-

ing with MAPE dropping to 3.42% and the lowest RMSE equal to 291 MW.

This result is the best across all combinations of reconciliation methods and

clustering structures, suggesting that spatio-temporal clustering is effective

in achieving a more accurate prediction of electricity demand in Alberta.

We then test if the differences in Table 2 are statistically significant. Ta-

ble 3 shows the results of pairwise Diebold and Mariano (2002) test for the

entire Alberta region. Under the null hypothesis, the forecasting approaches

in the rows of Table 3 have better accuracy than the model in the column.

A negative value of the statistics suggest that the method in the column is

more accurate than the one in rows. We compare the MinT reconciliation

Reconciliation Clustering Benchmark model
approach approach Base MinT

(Spatio-temporal)

Bottom-up No -44.46 -53.74
MinT No 27.12∗∗∗ -17.44
MinT Temporal 15.44∗∗∗ -23.44
MinT Spatio-temporal 27.06∗∗∗ -

Table 3: Results of pairwise Diebold and Mariano (2002) test for the entire Alberta region
(i.e. top-level series). Under the null hypothesis, the forecasting approach in the rows
has better accuracy than the model in the column. The statistics is reported, while ∗∗∗

indicates the significance of the test at 99% confidence.

approaches, that are those providing the best performances out-of-sample

for all considered clustering structures, with the base unreconciled forecasts.

Next, we compare all the approaches with the MinT reconciliation based

on spatio-temporal clustering. The results indicate that all the reconcilia-
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tion methods, with the only exception on the bottom-up approach, allow

improving the base unreconciled forecasts. This result is in line with those

of previous papers adopting forecast reconciliation to load forecasting (e.g.

see Brégère and Huard, 2022, Mesquita Lopes Cabreira et al., 2024). How-

ever, our results indicate that reconciliation approaches based on clustering

improve compared to that assuming no cluster structure. In particular, the

MinT approach based on spatio-temporal clustering provides the most ac-

curate forecasts, as suggested by the negative statistics in the last column

of Table 3. The differences are statistically significant, given that we do

not reject the null hypothesis of superior performance of the MinT with

spatio-temporal clustering compared to the benchmarks. In sum, our find-

ings suggest that the use of spatio-temporal clustering provides significant

improvement in the out-of-sample accuracy of the top-level series, that is,

the energy demand in the Alberta region. We then evaluate if significant

improvements can be found also for the bottom-level series. Table 4 shows

the average out-of-sample RMSE for the 42 AESO areas in Alberta. As in

previous table, Base provides the average results for the unreconciled fore-

casts, while OLS and MinT reconciliation are compared, under no clustering

assumption and both temporal and spatio-temporal cluster structure. For

the bottom-level series, we find that the MinT reconciliation with tempo-

ral clustering structure shows the largest improvements on average, but the

improvements obtained with the spatio-temporal clustering are comparable.

The RMSE for MinT with spatio-temporal clustering is indeed 17.86, that is

much lower than 21.93 obtained with the unreconciled approach. The results

obtained with temporal clustering are similarly good, given that the average

RMSE equals 17.68, while without clustering structure the average RMSE is

about 18. Therefore, in the case of bottom-level series, it seems important

the inclusion of the clustering structure. The reconciliation with OLS instead

provides a too little improvement compared to the unreconciled case, and in

this case the use of spatio-temporal clustering allows for improving the per-

formance most compared to both temporal and no clustering assumptions.
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Clustering No Temporal Spatio-temporal

Base 21.93 MW 21.93 MW 21.93 MW
OLS 21.83 MW 21.98 MW 21.78 MW
MinT 17.98 MW 17.68 MW 17.86 MW

Table 4: Average RMSE on testing data set for the 42 bottom-level series, that is, the
AESO areas.

The results shown in Table 4 provide average results. In Table 5, we evalu-

ate for how many areas the use of reconciliation improves compared to the

base approach. The OLS is confirmed to be not much effective in improving

out-of-sample accuracy, as the RMSE is improved only for the 54% of the

bottom level series, regardless the clustering approach adopted. Much larger

improvements can be found with MinT reconciliation, specifically those using

cluster structure. In particular, temporal clustering improves the forecast ac-

curacy for more than 90% of the AESO areas and spatio-temporal clustering

about 83%, while without the cluster structure the improvement is found for

80% of the bottom series.

Clustering No Temporal Spatio-temporal

OLS 54.7 % 54.2 % 54.7 %
MinT 80.1 % 90.4 % 83.3%

Table 5: Percentage of AESO areas for which RMSE has been improved with reconciliation.

In sum, our results suggest that considerable improvements can be ob-

tained using the MinT and spatio-temporal clustering, both for top-level

and bottom-level series. The spatio-temporal clustering, indeed, seems to be

better suited for forecasting electricity demand than temporal clustering.
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4. Conclusions

To ensure the reliable operation of the electricity grid 24 hours a day, balanc-

ing supply and demand is crucial. Accurate predictions of electricity demand

at various levels of aggregation are necessary for this balance. Predicting the

overall electricity demand is vital for injecting the appropriate amount of

electricity into the grid at any given time. Similarly, forecasting demand at a

more localized level is essential to ensure proper distribution across the grid.

In recent decades, the field of reconciliation forecasting has significantly ad-

vanced, introducing methods making forecasts coherent and more accurate

for all the considered levels of aggregation.

When dealing with regional electricity data, one common aggregation

approach is ensuring that the sum of individual regional profiles matches

the total demand for that region. However, regions often exhibit clustering

patterns in terms of the similarity of their demand behaviors. Recent studies

on forecast reconciliation have suggested that it is possible to derive more

accurate forecasts by accounting for such unknown clustered structures, as

opposed to assuming that no structure exists. Clustering methods, however,

are different and time series that fit multiple hierarchical structures are known

as grouped time series. In line with the assumption that different grouping

structures may be present, previous research (e.g. Yang and Shang, 2022)

demonstrated that the choice of aggregation method plays a critical role

in forecast accuracy. This principle holds true even when the exact group

structures are unknown.

In this paper, we evaluate the performance of grouped structures based on

the temporal similarity of consumption patterns against spatio-temporal ap-

proaches. Our case study focuses on electricity demand in the Alberta region,

Canada. We show that spatio-temporal approaches outperform temporal-

only methods in forecasting electricity demand in Alberta. In sum, our con-

tribution is threefold. First, we provide new evidence supporting the effec-

tiveness of forecast reconciliation in electricity demand forecasting. Second,

we extend forecast reconciliation to account for unknown spatio-temporal
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cluster structures, demonstrating that incorporating such structures improves

forecasting accuracy both at top and bottom levels. Therefore, we introduce

a new MinT reconciliation procedure based on spatio-temporal clustering,

highlighting its superiority over temporal-only clustering in forecasting elec-

tricity demand. Our results show that integrating spatial factors into the

clustering process yields more accurate reconciled forecasts. Finally, we offer

a simple method to apply the Chavent et al. (2018) ClustGeo algorithm to

hourly time series data.

We stress that our procedure is greedy, in the sense that it relies on

optimizing the summation matrix (through clustering), and only then the

reconciliation matrix. The optimization of these two matrices in unison con-

stitutes a highly complex problem, opening up a whole field of research.
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