Bandit algorithms for demand-side management

WPI-Workshop on Stochastics, Statistics, Machine Learning and their Applications of Sustainable Finance and Energy Markets

Margaux Brégère - September 2023

Bandits algorithms

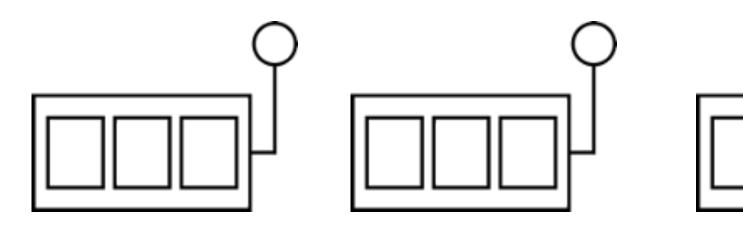
- Stochastic multi-armed bandit
- UCB algorithm
- Thompson sampling algorithm

Applications

Demand side management with incentive signals Control of flexible devices Hyper-parameter optimisation

Bandits algorithms

Stochastic multi-armed bandit



In a multi-armed bandit problem, a gambler facing a row of K slot machines - also called « one-armed bandits » - has to decide which machines to play to maximise her reward

Stochastic multi-armed bandit

Each arm (slot machine) k is defined by an unknown probability distribution ν_k

At each round t = 1, ..., T

- Pick a machine $I_t \in \{1, \dots, K\}$
- Receive a reward with $g_t | I_t = k \sim \nu_k$

$$R_T = T\mu_{k^*} - \mathbb{E}\left[\sum_{t=1}^T \mu_{t}\right]$$

 μ_{I_t} with $k^* \in \arg\max_k \mu_k$ A good bandit algorithm has a sub-linear regret: $\frac{R_T}{T} \rightarrow 0$

With $\mu_k = \mathbb{E}[\nu_k]$, to maximise the cumulative reward, we aim to minimise the regret, which is the difference, in expectation, between the cumulative reward of the best strategy and that of ours:

Upper Confidence Bound algorithm¹

Initialisation: pick each arm once

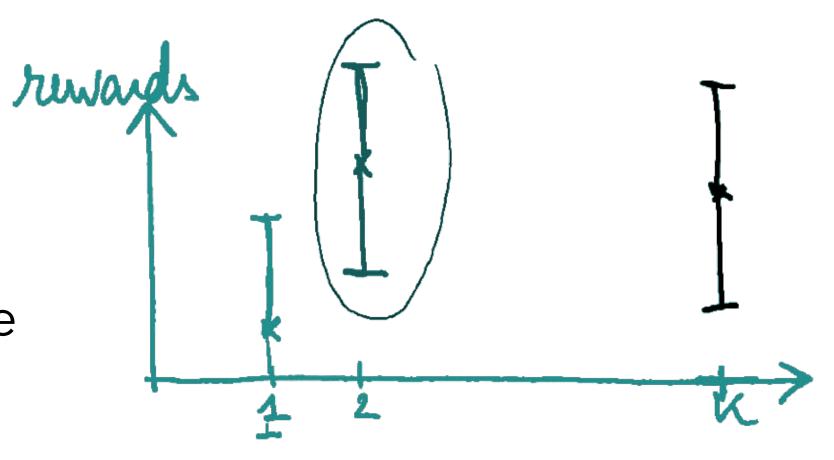
At each round t = K + 1, ..., T:

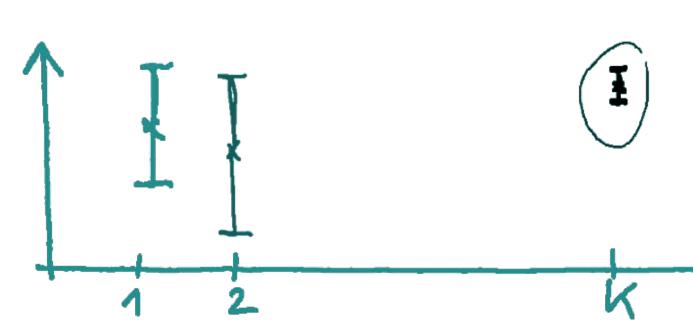
- Estimate the expected reward of each arm k with $\hat{\mu}_{k,t}$ the empirical mean of its past rewards
- Build some confidence intervals around these estimations: $\mu_k \in \left| \hat{\mu}_{k,t} - \alpha_{k,t}, \hat{\mu}_{k,t} + \alpha_{k,t} \right|$ with high probability

• Be optimistic and act as if the best possible probable reward was the true reward and choose the next arm accordingly

 $I_t \in \arg\max_k \left\{ \hat{\mu}_{k,t} + \alpha_{k,t} \right\}$

[1] Auer et al. (2002) - Finite-time analysis of the multiarmed bandit problem





UCB regret bound

The empirical means based on past rewards are

on past rewards are:

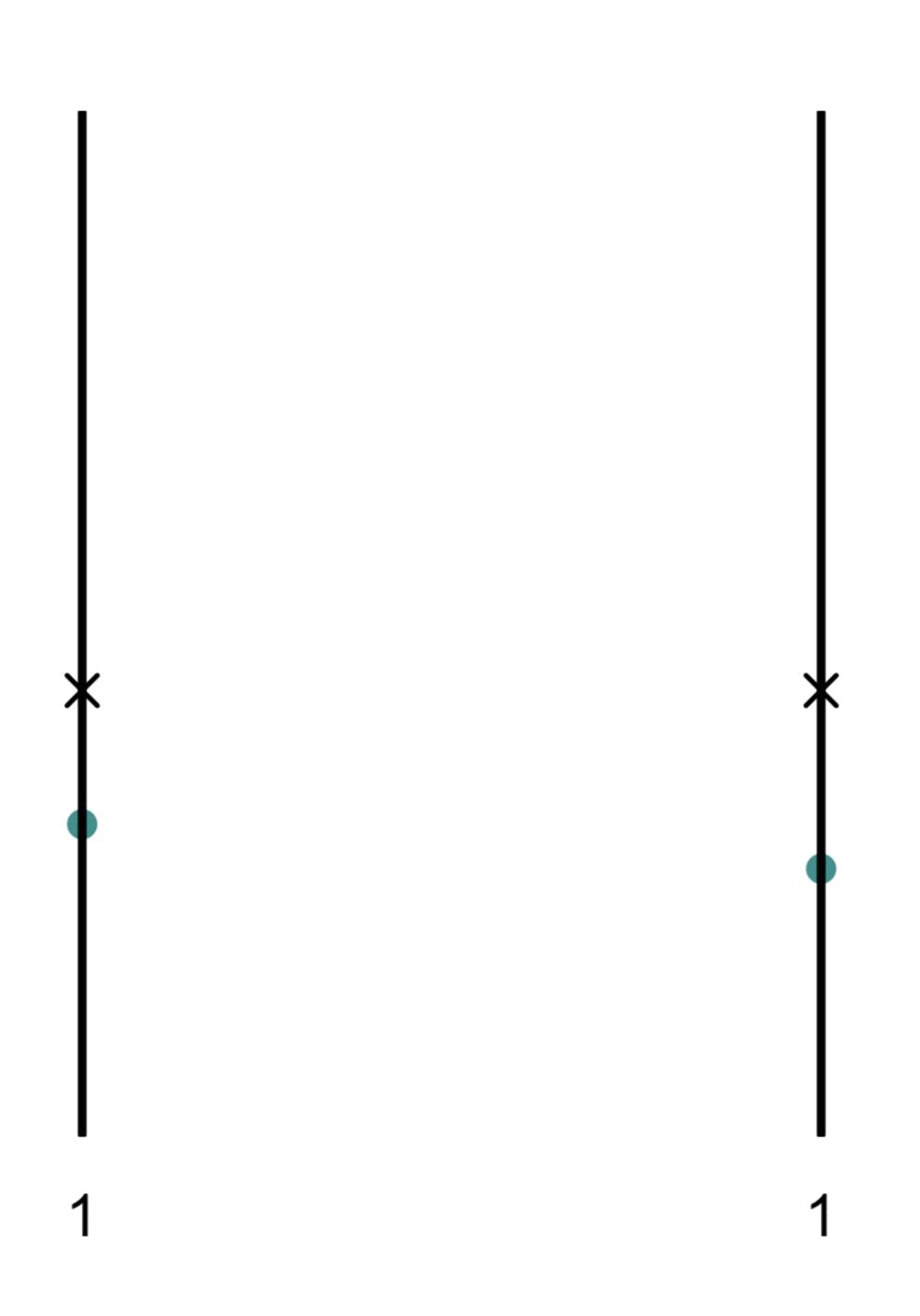
$$\hat{\mu}_{k,t} = \frac{1}{N_{k,t}} \sum_{s=1}^{t-1} g_s \mathbf{1}_{\{I_s=k\}} \text{ with } N_{k,t} = \sum_{s=1}^{t-1} \mathbf{1}_{\{I_s=k\}}$$

With Hoeffding-Azuma Inequality, we get

$$\mathbb{P}\left(\mu_k \in \left[\hat{\mu}_{k,t} - \alpha_{k,t}, \, \hat{\mu}_{k,t} + \alpha_{k,t}\right] \right) \ge 1 - t^{-3} \text{ with } \alpha_{k,t} = \sqrt{\frac{2\log t}{N_{k,t}}}$$

And be optimistic ensures that

 $R_T \lesssim \sqrt{TK \log T}$



Thompson sampling algorithm²

Initialisation: pick each arm once and set prior laws $\pi_{1,K}, \ldots, \pi_{K,K}$ on each arm

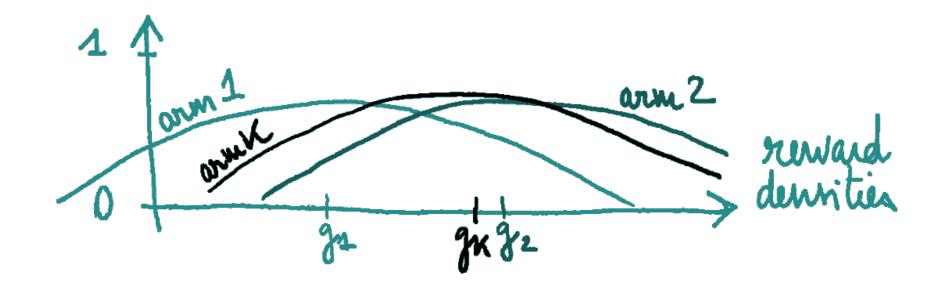
At each round t = K + 1, ..., T

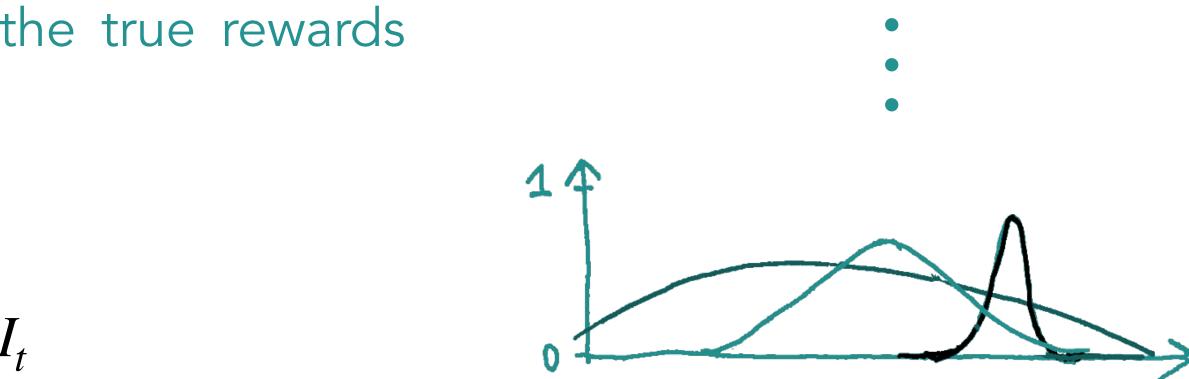
- Simulate reward $\hat{g}_{k,t} \sim \pi_{k,t}$
- Act as if the simulated rewards were the true rewards and choose the next arm accordingly

$$I_t \in \arg\min_k \hat{g}_{k,t}$$

• Observe g_t and update prior law of arm I_t $(\pi_{i,t} = \pi_{i,t-1} \text{ if } i \neq I_t)$

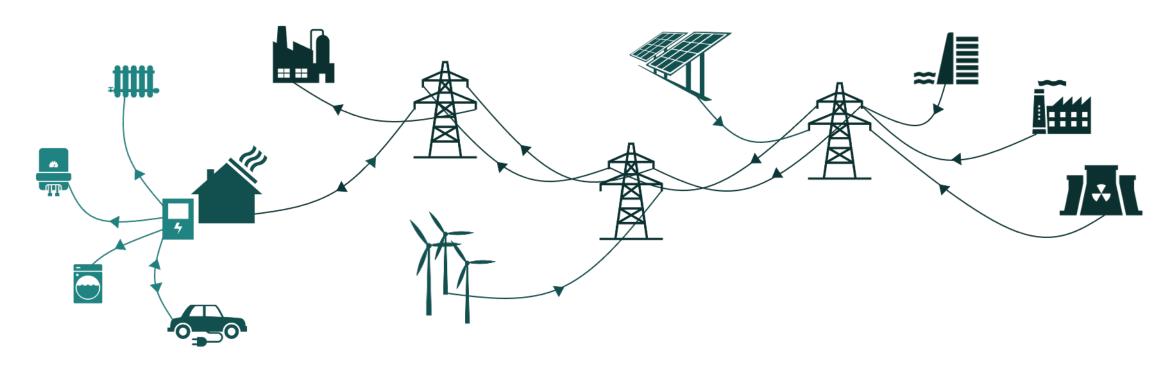
[2] Thompson (1933) - On the likelihood that one unknown probability exceeds another in view of the evidence of two samples





Applications

Demand Side Management



As electricity is hard to store, balance between production and demand must be strictly maintained

Current solution: forecast demand and adapt production accordingly

- With the development of renewable energies, production becomes harder to adjust
- New (smart) meters provide access to data and instantaneous communication

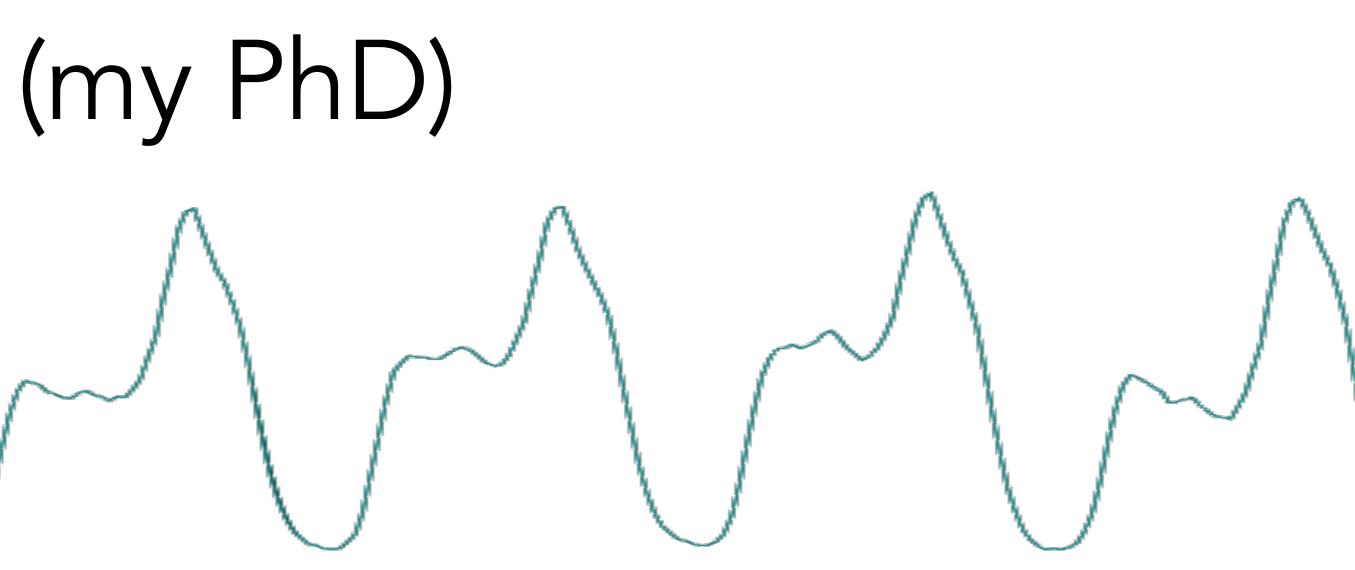
Prospective solutions to manage demand response:

- Send incentive signals (electricity tariffs)
- Control flexible devices

With incentive signals (my PhD)

How to develop automatic solutions to chose incentive signals dynamically?

Exploration: learn consumer behaviour Exploitation: optimize signal sending



« Smart Meter Energy Consumption Data in London Households »

Demand side management protocol

At each round t = 1, ..., T

- Observe a context x_t and a target c_t
- Choose price levels p,
- Observe the resulting electricity demand

 $Y_t = f(x_t, p_t) + \text{noise}(p_t)$

and suffer the loss $\ell(Y_t, c_t)$

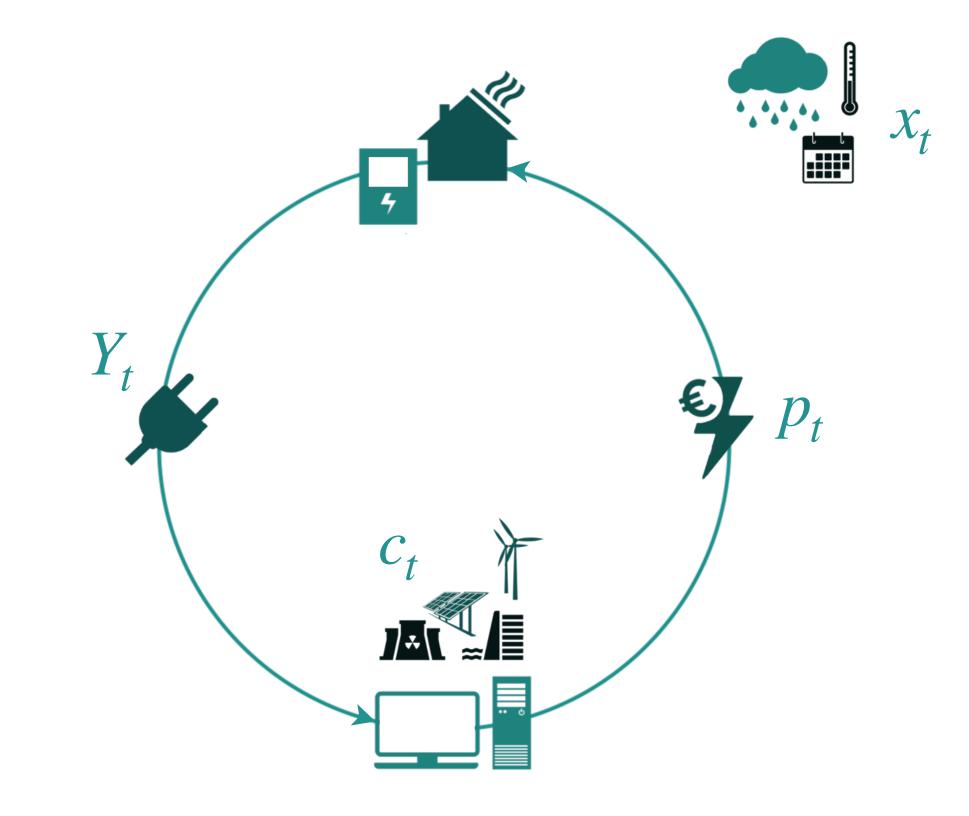
Assumptions:

• homogenous population, K tariffs, $p_t \in \Delta_K$

• $f(x_t, p_t) = \phi(x_t, p_t)^T \theta$ with ϕ a known mapping function and θ an unknown vector to estimate

• noise $(p_t) = p_t^{\mathrm{T}} \varepsilon_t$ with $\mathbb{V}[\varepsilon_t] = \Sigma$

•
$$\mathscr{C}(Y_t, c_t) = (Y_t - c_t)$$



Bandit algorithm for target tracking

Under these assumptions: $\mathbb{E}\left[\left(Y_t - c_t\right)^2\right]$ past, x

 \mathbb{C} Estimate parameters heta and Σ to estimate losses and reach a bias-variance trade-off

Optimistic algorithm:

For $t = 1, ..., \tau$

• Select price levels deterministically to estimate Σ offline with $\hat{\Sigma}_{ au}$

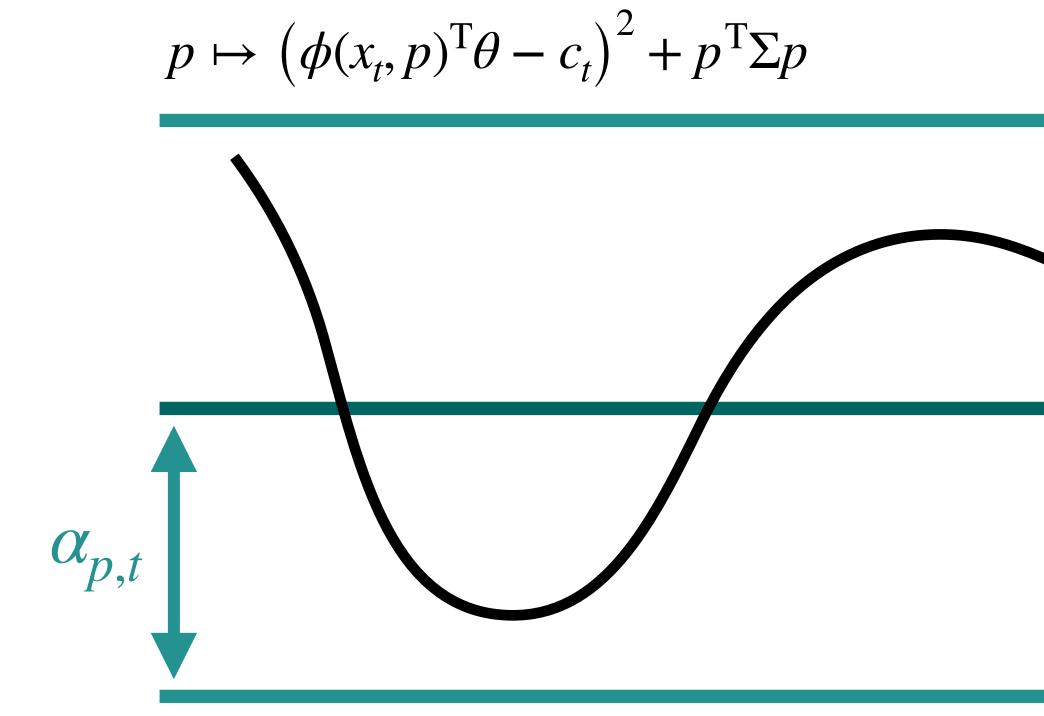
For $t = \tau + 1, ..., T$

- Estimate θ based on past observation with $\hat{\theta}_t$ thanks to a Ridge regression
- Get confidence bound on these estimations: $|\hat{\ell}_{p,t} \ell_p| \le \alpha_{p,t}$
- Select price levels optimistically:

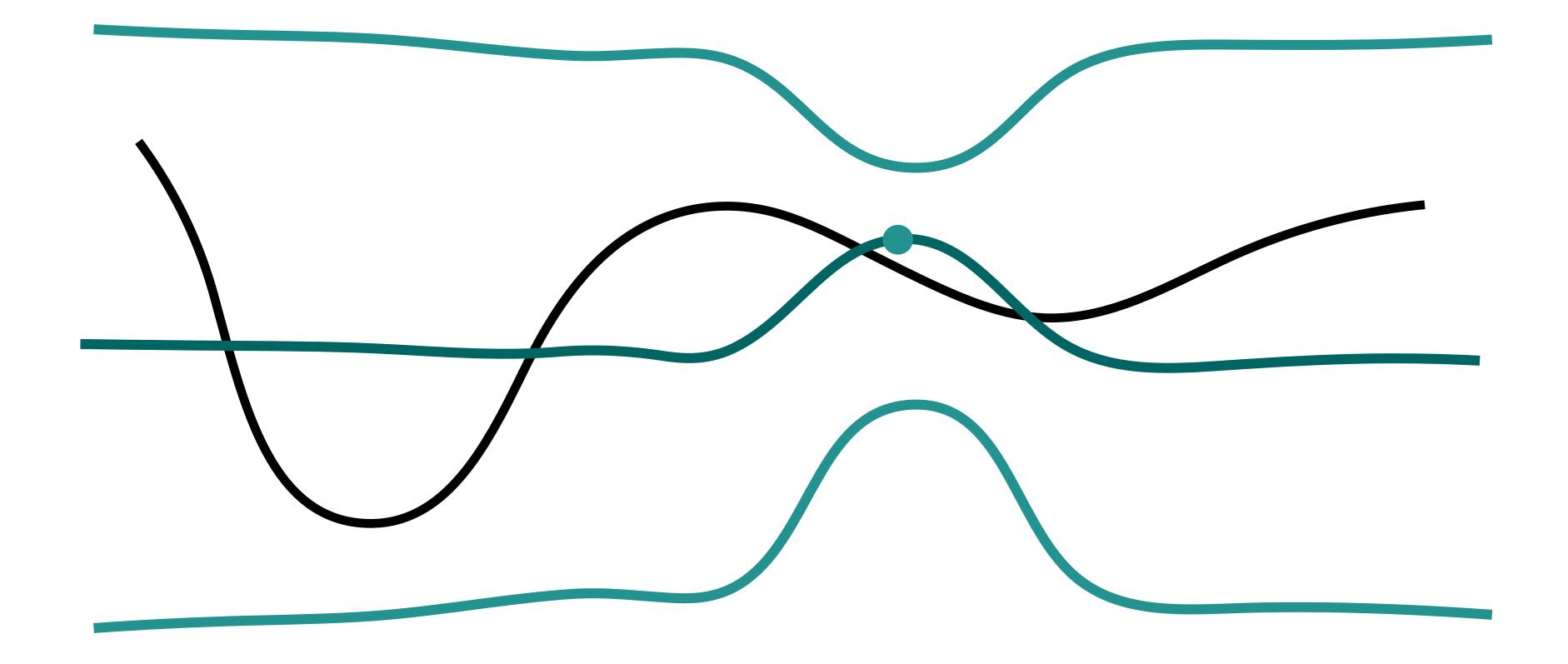
$$p_t \in \arg\min_p \left\{ \hat{\ell}_{p,t} - \alpha_{p,t} \right\}$$

$$x_t, p_t = \left(\phi(x_t, p_t)^{\mathrm{T}}\theta - c_t\right)^2 + p_t^{\mathrm{T}}\Sigma p_t$$

• Estimate future expected loss for each price level $p: \hat{\ell}_{p,t} = (\phi(x_t, p)^T \hat{\theta}_t - c)^2 + p^T \hat{\Sigma}_{\tau} p$



 $p \mapsto \left(\phi(x_t, p)^{\mathrm{T}}\hat{\theta}_t - c_t\right)^2 + p^{\mathrm{T}}\hat{\Sigma}_{\tau}p$





The problem is a bit more complex: curves vary with time *t*

Regret bound³ We recall that: $R_T = \sum_{t=1}^{T} (\phi(x_t, p_t)^T \theta - c_t)^2 + p_t^T P_t$ t=1

Theorem

probability

If Σ is known, $R_T \leq \mathcal{O}(\sqrt{T} \ln T)$

Elements of proof

- Deviation inequalities on $\hat{ heta}_{r}^{4}$ and on $\hat{\Sigma}_{ au}$
- Inspired from LinUCB regret bound analysis⁵

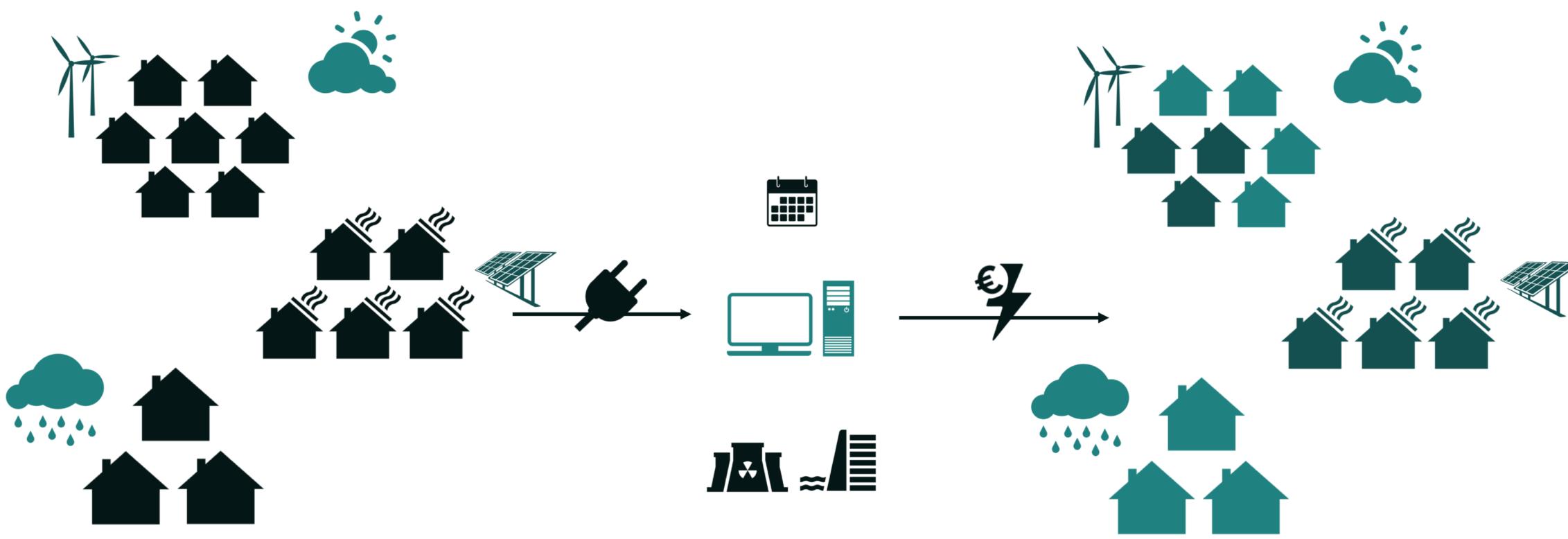
[3] Brégère et al. (2020) - Target tracking for contextual bandits: Application to demand side management [4] Laplace's method on supermartingales: Abbasi-Yadkori et al. (2011) - Improved algorithms for linear stochastic bandits [5] Chu et al. (2011) Contextual bandits with linear payoff functions

$$\sum_{t=1}^{T} \sum_{p} \min_{p} \left(\phi(x_t, p)^{\mathrm{T}} \theta - c_t \right)^2 + p^{\mathrm{T}} \Sigma p$$

For proper choices of confidence levels $\alpha_{p,t}$ and number of exploration rounds τ , with high

 $R_T \leq \mathcal{O}(T^{2/3})$

Extension: personalised demand side management



Flexible devices control (Bianca M. Moreno PhD)

At each round t = 1, ..., T

- Observe a target c_t
- Send to all water-heaters the probability of switching on $p_t \in [0,1]$
- Observe the consumption

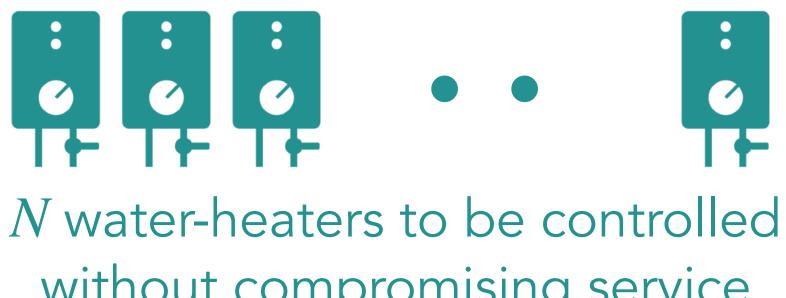
Assumptions:

- *N* water-heaters with same characteristics
- Demand of water-heater i is zero if off and constant if on

•State $x_{i,t} = (\text{Temperature}_t, \text{ON/OFF}_t)$ of water-heater *i* follows an unknown Markov Decision Process (MDP)

• It is possible to control demand if the MDP is known⁶

[6] Marin Moreno et al. (2023) - A mirror descent approach for Mean Field Control applied to Demand-Side management



without compromising service quality

> Learn MDP (drain law)

Follow the target

At this stage, online learning seams enough: drain law does not depend on the signals sent

Hyper-parameter optimisation (Julie Keisler PhD)

Train a neural network is expensive and time-consuming

Aim: for a set of hyper-parameters Λ (number of neurons, activation) functions etc.) and a budget T, find the best neural network:

$$\arg\min_{\lambda\in\Lambda} \mathscr{C}(f_{\lambda}(\mathscr{D}_{\mathrm{TEST}}))$$

At each round t = 1, ..., T

- Choose hyper-parameters $\lambda_t \in \Lambda$
- Train network f_{λ_t} on $\mathcal{D}_{_{\mathrm{TRAIN}}}$
- Observe the forecast error $\ell_t = \ell \left(f_{\lambda_t} (\mathcal{D}_{VALID}) \right)$

Output (best arm identification): $\arg \min_{f_{\lambda_t}} \ell(f_{\lambda_t}(\mathscr{D}_{VALID}))$

Train many neural network

Find the best neural network

KernelUCB⁷

Optimistic algorithm:

Inputs: exploration parameter E

For $t = \tau + 1, ..., T$

- Estimate the loss function $\ell(f_{\lambda}(\mathcal{D}))$ based on past observation thanks to a kernel regression • Estimate future expected loss for each price level λ : $\hat{\ell}_t(\lambda)$
- Get confidence bound on these estimations: $|\hat{\ell}_t(\lambda) \ell(f_{\lambda}(\mathcal{D}))| \leq \alpha_{\lambda,t}$
- Select next hyper-parameters optimistically:

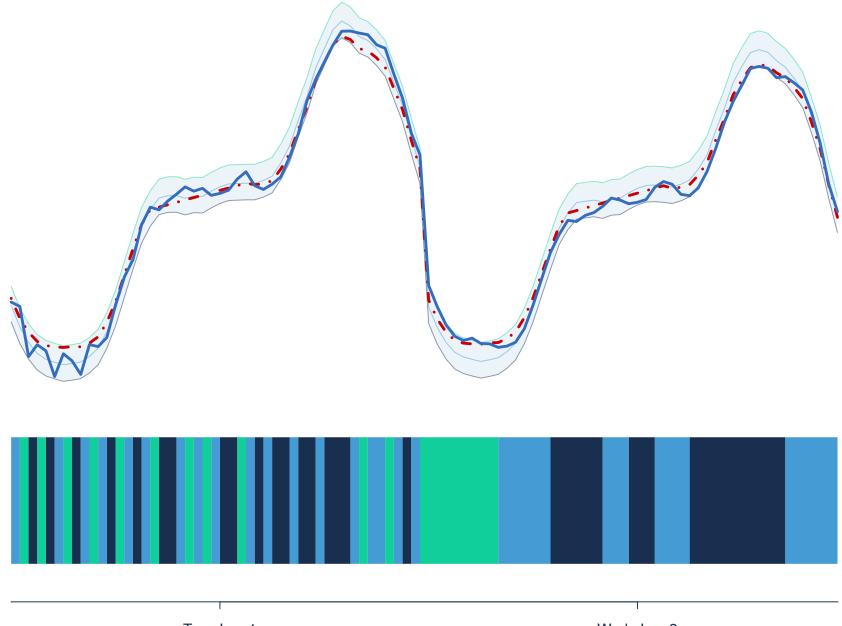
$$\lambda_t \in \arg\min_{\lambda} \left\{ \hat{\ell}_t(\lambda) - E\alpha_{\lambda,t} \right\}$$

[7] Valko et al. (2013) - Finite-time analysis of kernelised contextual bandits

Assumption: there exists a known mapping function Φ and an unknown parameter $heta^\star$ such that $\ell(f_{\lambda}(\mathcal{D})) = \Phi(\lambda)^{\mathrm{T}}\theta^{\star} + \text{noise}$

Thank you for your attention QUESTIONS?

Experiments



Tue. Jan. 1

Wed. Jan. 2

