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Bandits algorithms



Stochastic multi-armed bandit

In a multi-armed bandit problem, a gambler 
facing a row of  slot  machines - also called 
«  one-armed bandits  » - has to decide which 
machines to play to maximise her reward

K

Test many  
arms

Play the  
« best » arm

Exploration - Exploitation 
trade-off



Stochastic multi-armed bandit
Each arm (slot machine) k is defined by an unknown probability distribution   

At each round  

• Pick a machine    

• Receive a reward  with  

With , to maximise the cumulative reward, we aim to minimise the regret, which is the 
difference, in expectation, between the cumulative reward of the best strategy and that of ours:  
   

  

A good bandit algorithm has a sub-linear regret: 

νk

t = 1,…, T

It ∈ {1,…, K}

gt | It = k ∼ νk

μk = 𝔼[ νk ]

RT = Tμk⋆ − 𝔼[
T

∑
t=1

μIt ] with k⋆ ∈ arg max
k

μk

RT

T
→ 0



Upper Confidence Bound algorithm1

Initialisation: pick each arm once 

At each round : 

• Estimate the expected reward of each arm  with  the 
empirical mean of its past rewards 

• Build some confidence intervals around these estimations: 
 with high probability 

• Be optimistic and act as if the best possible probable 
reward was the true reward and choose the next arm 
accordingly 

 

t = K + 1,…, T

k ̂μk,t

μk ∈ [ ̂μk,t − αk,t , ̂μk,t + αk,t ]

It ∈ arg max
k { ̂μk,t + αk,t}

[1] Auer et al. (2002) - Finite-time analysis of the multiarmed bandit problem



UCB regret bound

The empirical means based on past rewards are:  

 with  

With Hoeffding-Azuma Inequality, we get 

  with   

And be optimistic ensures that  

̂μk,t =
1

Nk,t

t−1

∑
s=1

gs1{Is=k} Nk,t =
t−1

∑
s=1

1{Is=k}

ℙ ( μk ∈ [ ̂μk,t − αk,t , ̂μk,t + αk,t] ) ≥ 1 − t−3 αk,t =
2 log t

Nk,t

RT ≲ TK log T





Thompson sampling algorithm2

[2] Thompson (1933) - On the likelihood that one unknown probability exceeds another in view of the evidence of two samples

Initialisation: pick each arm once and set prior laws 
 on each arm 

At each round  

• Simulate reward   

• Act as if the simulated rewards were the true rewards 
and choose the next arm accordingly 

 

• Observe  and update prior law of arm  
( )

π1,K, …, πK,K

t = K + 1,…, T

̂gk,t ∼ πk,t

It ∈ arg min
k

̂gk,t

gt It
πi,t = πi,t−1 if i ≠ It



Applications



Demand Side Management

As electricity is hard to store, balance between 
production and demand must be strictly maintained  

Current solution: forecast demand and adapt 
production accordingly  

• With the development of renewable energies, 
production becomes harder to adjust  

• New (smart) meters provide access to data and 
instantaneous communication  

Prospective solutions to manage demand response:  

• Send incentive signals (electricity tariffs) 

• Control flexible devices 



With incentive signals (my PhD)

How to develop automatic solutions to chose incentive signals dynamically?  

Exploration: learn 
consumer behaviour

Exploitation: optimize 
signal sending  

« Smart Meter Energy Consumption 
Data in London Households »



Demand side management protocol
At each round  

• Observe a context  and a target  

• Choose price levels  

• Observe the resulting electricity demand  

 

and suffer the loss   

t = 1,…, T
xt ct

pt

Yt = f(xt, pt) + noise(pt)
ℓ( Yt, ct )

Assumptions: 

• homogenous population,  tariffs,  

•  with  a known mapping 
function and  an unknown vector to estimate 

•  with  

• 

K pt ∈ ΔK

f(xt, pt) = ϕ(xt, pt)Tθ ϕ
θ

noise(pt) = pT
t εt 𝕍[εt] = Σ

ℓ( Yt, ct ) = ( Yt − ct )2

pt

ct

xt

Yt



Bandit algorithm for target tracking 
Under these assumptions:  

☞ Estimate parameters  and  to estimate losses and reach a bias-variance trade-off  

Optimistic algorithm:  

For  

• Select price levels deterministically to estimate  offline with  

For  

• Estimate  based on past observation with  thanks to a Ridge regression 

• Estimate future expected loss for each price level :  

• Get confidence bound on these estimations:  

• Select price levels optimistically:  

𝔼[ (Yt − ct)2 past, xt, pt ] = (ϕ(xt, pt)Tθ − ct)2 + pT
t Σpt

θ Σ

t = 1,…, τ

Σ Σ̂τ

t = τ + 1,…, T

θ ̂θt

p ̂ℓp,t = (ϕ(xt, p)T ̂θt − c)2 + pTΣ̂τ p

| ̂ℓp,t − ℓp | ≤ αp,t

pt ∈ arg min
p

{ ̂ℓp,t − αp,t}



αp,t

p ↦ (ϕ(xt, p)Tθ − ct)2 + pTΣp

p ↦ (ϕ(xt, p)T ̂θt − ct)2 + pTΣ̂τ p





The problem is a bit more complex: curves vary with time  t



Regret bound3

We recall that: RT =
T

∑
t=1

(ϕ(xt, pt)Tθ − ct)2 + pT
t Σpt −

T

∑
t=1

min
p

(ϕ(xt, p)Tθ − ct)2 + pTΣp

[3] Brégère et al. (2020) - Target tracking for contextual bandits: Application to demand side management 

[4] Laplace’s method on supermartingales: Abbasi-Yadkori et al. (2011) - Improved algorithms for linear stochastic bandits 

[5] Chu et al. (2011) Contextual bandits with linear payoff functions

 Theorem 
 For proper choices of confidence levels  and number of exploration rounds , with high    

 probability  

 

 If  is known, 

αp,t τ

RT ≤ 𝒪(T2/3)

Σ RT ≤ 𝒪( T ln T)
Elements of proof 
   • Deviation inequalities on 4 and on  
   • Inspired from LinUCB regret bound analysis5   

̂θt Σ̂τ



Extension: personalised demand side management  



Flexible devices control (Bianca M. Moreno PhD)

 water-heaters to be controlled 
without compromising service 

quality

N

At each round  

• Observe a target  

• Send to all water-heaters the probability of switching on 
 

• Observe the consumption 

t = 1,…, T
ct

pt ∈ [0,1]

Assumptions: 

•  water-heaters with same characteristics 

• Demand of water-heater   is zero if off and constant if on  

•State  of water-heater  
follows an unknown Markov Decision Process (MDP) 

• It is possible to control demand if the MDP is known6 

N
i

xi,t = (Temperaturet, ON/OFFt) i

Learn MDP 
(drain law)

Follow the 
target

At this stage, online learning 
seams enough: drain law does 
not depend on the signals sent 

[6] Marin Moreno et al. (2023) - A mirror descent approach for Mean Field Control applied to Demand-Side management



Hyper-parameter optimisation (Julie Keisler PhD)
Train a neural network is expensive and time-consuming 

Aim: for a set of hyper-parameters  (number of neurons, activation 
functions etc.) and a budget , find the best neural network: 

  

At each round  

• Choose hyper-parameters  

• Train network  on  

• Observe the forecast error  

Output (best arm identification):  

Λ
T

arg min
λ∈Λ

ℓ(fλ(𝒟
TEST))

t = 1,…, T

λt ∈ Λ

fλt
𝒟

TRAIN

ℓt = ℓ(fλt(𝒟
VALID))

arg min
fλt

ℓ(fλt(𝒟
VALID))

𝒟
TRAIN

𝒟
VALID

𝒟
TEST

Train many 
neural network

Find the best 
neural network



KernelUCB7

Assumption: there exists a known mapping function  and an unknown parameter  such that 

   
Optimistic algorithm:  

Inputs: exploration parameter   

For  

• Estimate the loss function  based on past observation thanks to a kernel regression 

• Estimate future expected loss for each price level :  

• Get confidence bound on these estimations:  

• Select next hyper-parameters optimistically:  

Φ θ⋆

ℓ( fλ(𝒟)) = Φ(λ)Tθ⋆ + noise

E

t = τ + 1,…, T

ℓ( fλ(𝒟))
λ ̂ℓt (λ)

| ̂ℓt (λ) − ℓ( fλ(𝒟)) | ≤ αλ,t

λt ∈ arg min
λ

{ ̂ℓt(λ) − Eαλ,t}

[7] Valko et al.  (2013) - Finite-time analysis of kernelised contextual bandits



Thank you for your attention 
QUESTIONS?



Experiments
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