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Bandits algorithms
Stochastic multi-armed bandit

UCB algorithm

Thompson sampling algorithm

Applications
Demand side management with incentive signals
Control ot flexible devices

Hyper-parameter optimisation



Bandaits algorithms



Stochastic multi-armed bandit

Test many Play the
arms « best » arm

facing a row of K slot machines - also called f

« one-armed bandits » - has to decide which

In a multi-armed bandit problem, a gambler

Exploration - Exploitation

machines to play to maximise her reward trade-off



Stochastic multi-armed bandit

Each arm (slot machine) k is detfined by an unknown probability distribution v,
Ateachroundr=1,...,T
* Pick a machine I, € {1,..., K}

® Receive areward with g |/, =k ~ 1,

With u, = E [vk], to maximise the cumulative reward, we aim to minimise the regret, which is the
difference, in expectation, between the cumulative reward of the best strategy and that of ours:

T
Ry = Ty — -[ Z//t] ] with k™ € arg max g
f k
=1

R
A good bandit algorithm has a sub-linear regret: TT > 0




Upper Confidence Bound algorithm’

Initialisation: pick each arm once

Ateachroundr=K+1,...,T:

* Estimate the expected reward of each arm k with /i, , the

empirical mean of its

e Build some confide

past rewards

nce intervals around these estimations:

My € [ﬂk,t — Oy gy gy -

* Be optimistic and

-, | with high probability

act as if the best possible probable

reward was the true reward and choose the next arm

accordingly

I €

arg max {/2,”+ akt}
) , ,

[1] Auer et al. (2002) - Finite-time analysis of the multiarmed bandit problem
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UCB regret bound

The empirical means based on past rewards are:

iy = N ngl{l—k} with Ny, = Zl{l—k}
kot g—1 s=1

With Hoeftding-Azuma Inequality, we get

2logt

P ( Hi € [ﬂk,t — Qs iyt O‘k,t] ) 21 =17 with e =\/ N
k.t

And be optimistic ensures that

R SA/TKlog T






Thompson sampling algorithm?

Initialisation: pick each arm once and set prior laws
TT| ks ---» T p ON €ach arm

a A
A
Ateachroundtr=K+1,....T W ol

* Simulate reward g, , ~ 7, , o e
e Act as if the simulated rewards were the true rewards .
and choose the next arm accordingly .

[, € argmin g, , 14

ok

* Observe g, and update prior law of arm [, 01—

(m;, = 7,1t i # 1)

l

[2] Thompson (1933) - On the likelihood that one unknown probability exceeds another in view of the evidence of two samples



Applications
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Demand Side Management

As electricity is hard to store, balance between
production and demand must be strictly maintainea

Current solution: forecast demand and adapt
production accordingly

[t e With the development of renewable energies,
1By production becomes harder to adjust

* New (smart) meters provide access to data and
Instantaneous communication

Prospective solutions to manage demand response:

e Send incentive signals (electricity tarifts)

e Control flexible devices



With incentive signals (my PhD)

FRAVAVEAVEAYAAT:

How to develop automatic solutions to chose incentive signals dynamically?

Exploration: learn  Exploitation: optimize %\%%
.4

consumer behaviour signal sending

« Smart Meter Energy Consumption
Data in London Households »




Demand side management protocol

Ateachroundt=1,...,T
* Observe a context x, and a target ¢,

* Choose price levels p,

e Observe the resulting electricity demand

Y, = f(x,, p,) + noise(p,)
and suffer the loss L”( Y, ct)

Assumptions:

* homogenous population, K tariffs, p, € Ay

'f(xt,pt) = gb(xt,pt)Té’ with ¢ a known mapping
function and @ an unknown vector to estimate

e noise(p,) = p, e, with \/let] =2
e £(Yc,)= (Y, —¢)



Bandit algorithm for target tracking

Under these assumptions: [ (Yt — ct)z past,x,p, | = (gb(xt,pt)TH — Ct)z +p'Zp,

= Estimate parameters ¢/ and 2 to estimate losses and reach a bias-variance trade-off

Optimistic algorithm:
Fort=1,...,7
o Select price levels deterministically to estimate X offline with X

Fort=7+1,...,T

e Estimate @ based on past observation with 6, thanks to a Ridge regression

Va\

. . A 2 &
* Estimate future expected loss for each price level p: ), , = (gb(xt,p)Té’t — c) +p'Yp
* Get confidence bound on these estimations: \sz,t -7, L a,,
* Select price levels optimistically:

p, € arg ngn {z?p,t - ap,t}



2
p = <¢(xtap)T‘9 — Ct) +pTEP

n ) A
pr (¢px.p)'0,—c) +p'Z.p







N

The problem is a bit more complex: curves vary with time ¢



Regret bounds

T
We recall that: R, = Z (qb(xt, p)O— ct)z +p'Ep, — Z min (¢(xt, p)'o— ct)z p'Ep
p

=1 =1
Theorem
For proper choices of contidence levels @, , and number of exploration rounds 7, with high
probability
R, < O(T?)
It 2 is known, R; < @(ﬁ In T)

Elements of proof

* Deviation inequalities on é’ﬁ and on X
* Inspired from LinUCB regret bound analysis®

3] Brégere et al. (2020) - Target tracking for contextual bandits: Application to demand side management

4] Laplace’s method on supermartingales: Abbasi-Yadkori et al. (2011) - Improved algorithms for linear stochastic bandits

5] Chu et al. (2011) Contextual bandits with linear payoft functions



Extension: personalised demand side management




Flexible devices control (Bianca M. Moreno PhD)

N water-heaters to be controlled

Ateachroundt=1,...,T

e Observe a target ¢,

* Send to all water-heaters the probability of switching on
p: € [0,1]

| without compromising service
e Observe the consumption quality
Assumptlonsz Learn MDP Follow the
e N water-heaters with same characteristics (drain law) target

e Demand of water-heater i is zero if off and constant if on :

oState x;, = (Temperaturet, ON/OFF,) ot water-heater i

= At this stage, online learning
follows an unknown Markov Decision Process (MDP)

seams enough: drain law does
® |t is possible to control demand if the MDP is knowné not depend on the signals sent

[6] Marin Moreno et al. (2023) - A mirror descent approach for Mean Field Control applied to Demand-Side management



Hyper-parameter optimisation (Julie Keisler PhD)

Train a neural network is expensive and time-consuming

Aim: for a set of hyper-parameters A (number of neurons, activation
functions etc.) and a budget 7, find the best neural network:

‘ - )

i
‘\i

. ;"“ ' 7 & I

. N\
argmin¢(f,(2,,.,) A RO\
Q .A"’f.""\ —

— R

Ny

Ateachroundr=1,...,T

RS
-

/

=
‘VIQI'

s A

AD

.\ ~>

* Choose hyper-parameters 4, € A

TRAIN VALID TEST

e Observe the forecast error ¢, = f(ﬁlt<@vAL1D)>

* Train network f;, on &

Train many Find the best

, o , , neural network neural network
Output (best arm identification): arg min z/”(f/1 (QZ ) )
! VALID

Ja z



KernelUCBY

Assumption: there exists a known mapping function ® and an unknown parameter 6* such that

£(f(D)) = D(A)'0* + noise

Optimistic algorithm:
Inputs: exploration parameter E

Fort=7+1,...,T

* Estimate the loss function f(ﬁ(@)) based on past observation thanks to a kernel regression

* Estimate future expected loss for each price level 4: z?t (4)

e Get confidence bound on these estimations: \z?t (1) — f(]}(@)) | <,

e Select next hyper-parameters optimistically:

), € argmin {Z,(1) — Ea; ,}
; ,

[7] Valko et al. (2013) - Finite-time analysis of kernelised contextual bandits



Thank you for your attention
QUESTIONS?



Experiments | .-
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